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Abstract: Automated planning tools play a large and expanding role in the function of many parts of our lives. The 
complex nature of the planning problem and the increasing amount of information the human planner must 
synthesize indicate that assistive automation must soon become the norm. Despite this, many existing 
automated planners are incapable of producing plans that reflect the desires and expertise of their operators. 
They do not have the direct ability to consider the operators’ priorities, nor can they exploit expert operational 
knowledge that comes from human experience and not data systems. In this paper we present methods to learn 
operator planning preferences and then nudge our automated logistic planner to produce plans that are better 
aligned with operator preferences without changing the code of the planner.  

1. INTRODUCTION 

AI planner and schedulers are the earliest adopted AI 
systems (c.f. Sacerdoti, 1977, Zweben and Fox, 
1994). While planning and scheduling systems can 
successfully search through complex and large search 
spaces to identify valid plans, their outputs are rarely 
adequate for the human planners. This is because the 
AI captures hard constraints of the problem, ensuring 
viability of the solution but oftentimes ignoring the 
human preferences and perspective into what 
constitutes a good solution. The complicated nature 
of the implemented systems and the often life-critical 
applications they serve makes it impractical or cost 
prohibitive to modify the code to include the ever-
changing human perspective and situationally 
specific mission priorities.  

The objective of Learning Expertise from Air-
Mission Planners (LEAP) is to improve the usability 
and performance of legacy mission planning systems 
by identifying operator preferences with a minimum 
number of queries and then externally affecting the 
output of the mission planning system to produce 
plans that are aligned with learned preferences 

 
a  https://orcid.org/0009-0005-4683-5235 
b  https://orcid.org/0000-0002-2117-5294 

without changing the original planning algorithm’s 
code base.  

LEAP augments the automated planner using 
expert, contextualized criteria gathered from 
interactive learning sessions with subject matter 
experts (SME)s, with a minimal number of questions. 
In this paper we demonstrate that LEAP could 
improve plan quality produced by a black box 
mission planner through a small number of 
interactions with human SMEs.  Our contributions are 
following: 
1. Identified classes of preferences that could be 

learned with minimal querying. 
2. Developed a general Question & Answer (Q&A) 

framework with a question generation strategy 
that was based on reducing the uncertainty while 
allowing both direct and indirect queries. Direct 
queries explicitly queried knowledge, indirect 
queries showed the user options and asked which 
one was better.  

3. Designed and implemented control nudges to 
affect the learned preferences in the planner. 
These nudges worked by modifying either 
configuration parameters of the planner or the 



input to the planner, never modifying the source 
code of the planner. 

4. Demonstrated significant performance 
improvement in quality of plans with respect to 
planner preferences in both automated 
experiments and in-person SME evaluations. 
LEAP plans were always at least as good as the 
legacy planner, most of the time even better. 

2. BACKGROUND 

Figure 1 shows a high-level view of LEAP 
components. The central oval represents the Learning 
Controller, which is responsible for the run-time 
management of the Interactive Learning process. The 
Learning Controller chooses from one or more 
scenarios produced off-line, with the help of our 
SME, or can learn online from operator inputs. As a 
session proceeds, Preference Learning and Query 
Formulator are responsible for maintaining the model 
of learned operator preferences and posing new 
queries to the SME to refine the learned model. The 
Query Formulator minimizes the number of queries 
needed using different strategies. LEAP’s automated 
planner is Global Mission Scheduler (GMS) to 
automate cargo mission planning (Scott et al., 2009). 
The Problem Formulator provides the Learning 
Controller a mechanism to communicate preferences 
and control nudges to the GMS Planner for a specific 
planning problem. The SME from whom we are 
learning preferences is pictured in the upper-left 
quadrant and is queried by the Learning Controller 
with the assistance of GUIs built to support an 
interactive learning session. Next, we present the 
background on the cargo mission planning domain, 
GMS planning system, and an example use case.   

2.1 Cargo Mission Planning Domain 
& Planner 

A cargo mission starts as a response to a set of 
requirements, each specifying an amount of cargo 
(and/or passengers) to be moved from a given POE 
(point of embarkation) to a given POD (point of 
debarkation), with the load ready to be picked up on 
ALD (available to load date) and needing to be 
delivered by LAD (latest arrival date). In the plans 
generated, there is one mission per requirement, i.e., 
we are not considering aggregating cargo in a single 
plane.  In this domain the aircraft and personnel have 
home stations to return after completing a mission. 
Each hub in the domain is an airfield identified with 
an ICAO code, a four-letter code designating 
aerodromes around the world.  

In this paper, we will use the GMS planner to create 
the schedule and itinerary for a given mission.  
Itinerary generation includes planning for all the 
necessary refueling and crew rest stops, considering 
the cargo loads on each leg (to ensure the validity of 
the itinerary, since fuel is burned faster for heavier 
loads, resulting in a shorter maximum range).  
Examples of additional considerations are airfield 
capacities, windows of operation, and crew duty day 
limitations.  GMS utilizes complex physics models to 
compute realistic flight times and routes based on the 
load size, fuel amount, fuel burn rate and runway 
lengths etc. 

The GMS Mission Detail Display shown in Figure 
2 is a visualization of a planned mission.  This 
mission – mission A22651 (using an arbitrary naming 
scheme) – has a pickup of cargo at Norfolk (KNGU) 
followed by a drop-off of cargo at Djibouti (HDAM).  
The rough itinerary shows what roles each stop plays 
in the mission. The mission is currently planned to be 
operated out of Charleston (KCHS), transiting to 
Norfolk (KNGU) to pick up cargo, followed by stops 
to both refuel and rest crew (denoted by the gas pump 
icon and bed icon beneath the ports) in Lajes (LPLA) 
and Bole (HAAB) before arriving at Djibouti.  A 
refuel and crew rest stop at Moron, Spain (LEMO) is 
made on the way back to Charleston.  The stops that 
are required for this mission - the stops where cargo 
is picked up or dropped off (or the aircraft/aircrew 
originate or terminate) - are highlighted with darker 
borders, while the remaining stops (with lighter 
borders) can be replaced at will by the planner or the 
automated scheduler. 

 
 
 
 
 
 
 
 
 

 
 
Figure 1: High-level LEAP Components with 
Automated Planner in gray/black, Learning Model in 
green, Scenario Development in blue, and Human 
Planning SME in orange.  



Figure 2: GMS Mission Detail Display. 

2.2 Example Cargo Mission 
Planning Problem 

We expand the example presented to illustrate the 
choices a planner needs to make to plan a mission, to 
describe how these choices might map to preferences 
in a simple priority-based preference model and how 
a few questions let us learn an expert’s preferences in 
planning this mission. 

The mission tasks a cargo plane to travel from its 
home base to Norfolk Naval Air Station to pick cargo, 
deliver it to Djibouti, and return home empty. Using 
GMS, we computed four alternative plans. Each one 
utilizes different intermediate stops for crew rest and 
refueling. Three mission plans use augmented crew 
(allowing longer non-stop flights). Table 1 
summarizes some characteristics of the statistics for 
each plan: “Lateness” (measured in hours) is the 
difference between the actual delivery time and 
required delivery time. Lateness is zero if the cargo 
was delivered before or on time. “Crew Type” is 
either basic or augmented), “Rest Quality” 
(desirability rating), and finally “Flying Hours” the 
time in flight which is used to estimate cost.  

The “best” option for this mission depends on the 
operator’s preferences. If the SME has the preference 
F1 > F2 > F3 > F4, then he chooses option 3 as the 
best plan.  If the SME has the preference F2 > F1 > 
F3 > F4, then he chooses option 4, with the basic 
crew, even though the aircraft will be out for an extra 
day. If the SME is more concerned about crew rest 
locations, then he might have a preference such as F3 
> F1 > F2 > F4, which ranks option 2 as highest. Even 
from one example, it is possible to learn, at least 
partially, what the SME’s preference might be. For 
example, if the SME chooses option 3 over all others, 
assuming less cost is preferred, LEAP can deduce that 
the most important features are F1 and F2. Using this 

partial model when planning a similar mission, LEAP 
tasks the GMS planner to produce a plan with the 
qualities of an augmented crew and the shortest time 
away for the aircraft and crew.  

3. PREFERENCES AND 
LEARNING 

Initially, we represented preferences using 
lexicographic preference models (LPMs), which 
enforced a total order on the attribute space (Colman 
and Stirk, 1991, Ford et al., 1989, Westenberg and 
Koele, 1994). LPMs also generalizes to continuous 
valued variables by taking advantage of monotonic 
properties. For example, we could represent that 
shorter flight time is preferred over longer flight time. 
Priority-based preference examples discussed in 
previous section are all LPMs. Later on, we extend 
our preference models with a trade-off representation 
by combining the existing LPMs with a decision-tree-
like conditional representation.  
Learning Algorithm: We utilized the CHARM 
algorithm (Yaman et al. 2011) to learn the LPMs. 
CHARM kept track of a set of LPMs consistent with 
all the training data, which was a set of pairwise 
comparisons on plan features. For example, Table 1 
represents six pairwise plan comparisons for 
CHARM.  

Initially, CHARM considers all features as equally 
important (rank of 1). At every iteration and for every 
pair, CHARM predicts a winner as follows: Among 
the features that were different in the comparisons, 
the ones that have the smallest rank (the most salient) 
votes to choose the preferred option. If the CHARM 
prediction was correct (the option with the most votes 
wins), then the ranks stay the same. Otherwise, the 
ranks of the features that voted for the wrong option 
were incremented, thus reducing their importance. 
CHARM loops over the set of pairwise comparisons 
until the ranks converge. Correctness and 
convergence of the algorithm is guaranteed if the 

Plans F1:  
Lateness 

F2: Crew 
Type 

F3: Rest 
Quality 

F4: Flying 
Hours 

#1 1 Augmented Reasonable 41 
#2 2 Augmented Preferred 42 
#3 0 Augmented Reasonable 43 
#4 4 Basic Undesirable 44 

 

Table 1: Mission Plan Options with Respect to 
Defined Features of a Learned Model. 

 



training data is noise and tie free. For LEAP, we 
assumed that the SME choices were consistent, thus 
the input to preference learning was noise free.  

3.1 Trade-off Trees  

 SME feedback highlighted the inflexibility of the 
LPMs, which required we extend our preference 
model representation. For example, if our SME 
wanted to express: “Even if flight-time is more 
important than lateness, if less than 0.5 hour gain in 
flight time is causing more than 24 hours delay then 
flight-time should be ignored in favor of lateness.” In 
achieving this extension, we aimed for 
computationally feasible and explainable 
representations. 

Our trade-off-based models use a hybrid 
representation of decision trees and LPMs. Such 
hybrid representations represent both conditional 
preferences and trade-off concepts. Figure 3 is an 
example trade-off tree where original LPM is in green 
and a truncated LPM which ignores the flight-time is 
in purple. Depending on the maximum lateness when 
comparing a pair of plans, and the difference in flight 
time and lateness, we might have ended up using 
either the original LPM or the truncated one. In a 
trade-off tree for two attributes A and B, where A is 
declared more important than B in general, the 
intermediate nodes could have branching conditions 
on one of the following: 
• A(+): Best value for the attribute A when 

comparing two individuals, in this case two 
plans. 

• B(+): Best value for the attribute B. 
• diff_A: Absolute value of difference in A values 

in compared individuals. 
• diff_B: Absolute value of difference in B values 

in compared individuals. 

While in theory we could learn tradeoffs between 
every consecutive attribute in an LPM, our 
interactions with the SME led us to believe that the 
most important tradeoff relationship was between the 
first and the second attributes in an LPM. Thus, we 
focused on demonstrating the learning and 
representation of tradeoff trees for the most important 
two attributes only. Learning of tradeoff trees was 
triggered when the planner picked a seemingly 
inferior plan with respect to the most important 
attribute as learned by the LPM, but superior with 
respect to the second most important attribute (see 
Figure 4). Whenever the SME made such a choice, 

we created a vector with four values computed from 
the original pair of plan attributes, and labeled it as an 
example of ignoring the most important attribute. The 
next section explains the algorithm that took these 
data points and built a trade-off tree.  

 

3.1.1 Learning trade-off trees  

Our strategy in learning trade-off trees was based on 
tracking the SME interactions with the LEAP ranking 
GUI. Whenever the SME reordered the ranked 
mission plans, LEAP recorded this exception and 
generated data points (as explained in the previous 
section) to feed into the well-known decision tree 
building algorithm, C4.5. Using C4.5, we built a tree 
incrementally as the user kept adding more 
exceptions. As the exceptions updated in the trade-off  
model, LEAP used the new model to rank the next set 
of plans, thus, providing a life-long learning set up. 
For our experiments, we limited the exception 
recording and learning sessions to three sets of 
missions. This was mostly to ensure consistent 
interaction with the SME.   

 One of the weaknesses of the C4.5 algorithm was 
the boundary conditions computed for numeric nodes 
being limited to the values that are seen in the training 
data set. While we could have employed a search-
based method to pinpoint the exact threshold value 
for these nodes, we decided, for the sake of not 
bombarding the user with a series of implicit 
questions, to ask the user directly to set the boundary 

Figure 4: Generating trade-off tree attributes from 
LPM. 

 
Figure 3: Trade-off tree representation. 



conditions. From our experience with SMEs, the user 
would already have a trade-off value set in their mind. 
A binary search over the value space just to prove that 
we could eventually learn the correct value would 
only frustrate the user and violate one of our main 
goals. Thus, after the learning step was completed, we 
presented the user an interactive trade-off tree 
visualization where they could adjust the node 
conditions. As the user adjusts the values 
(overwriting previous tree), we re-compute the trade-
off tree and updated the visualization.  

Sorting with trade-off trees could be tricky due to 
loss of transitivity between pairwise comparisons 
when pairs follow different branches. Loss of 
transitivity could lead to circular ordering graph 
which meant individual schedules could not be 
sorted. To overcome this challenge, we implemented 
a scoring function that counted the pairwise wins 
when soring a set of plans. The tie breaker if there 
were equal scores was the original LPM.  

4. CONTROL: NUDGING 
ALGORITHMS 

We started with two kinds of nudges to make GMS 
produce user preference aligned solutions: 1) modify 
inputs (DS for modifications in scenario), and 2) set 
configuration parameters (DC for modifications in 

configuration) that would bias GMS towards desired 
mission plans.  Before discussing methods for 
nudging (i.e., computing DS and DC), we will 
summarize the GMS algorithm, which has two-steps. 
In the first step, GMS computes the best stop over 
locations for a pair of pick-up and drop-off locations. 
This step uses an A-* algorithm where the guiding 

metric is the total time spent on the route. The amount 
of time spent on a rest stop is penalized if the rest stop 
is not a favored base. Next, the landing and takeoff of 
each leg in the route is computed, taking into account 
availability of resources on the bases. The ingrained 
biases in GMS algorithm order might not necessarily 
align with preferences of the user creating challenges 
in aligning GMS output with the user’s preferences. 
The following is a list of nudging methods for single 
attributes: 
Lateness: Add a landing constraint for destination: 
LandingTime<= dueDate.  If there is no solution, 
then relax the constraint by 6 hours until a solution is 
found (△S).  
Rest Quality:  Reduce the time-delay in in the first-
tier bases to further distinguish them from lower tiers 
(△C).  
FlightTime: Set the time-delay in all stop over bases 
to zero so the flight time dominates the total time 
spent (△C). 
CrewType: GMS has the option to choose the crew 
type as input. If there is no solution for the preferred 
type, then switch the value (△S).  

We used the following generic algorithm shown 
in Figure 5 for biasing GMS results. In this domain, 
the Lateness and CrewType nudge could be combined 
with every attribute because they added more 
constraints. However, the FlightTime and 
RestQuality nudges would be mutually exclusive 
because they were part of the same optimization 
function. Thus, we could only nudge the most 
important one with respect to the LPM, while the 
other could be nudged individually. This meant that 
given an LPM with the four attributes listed above, 
we could at most combine 3 of them.  

To extend the algorithm for use with trade-off 
trees, we keep the nudging algorithm the same, but 

 

Figure 6: Summary of rankings over three 
missions. 

 
 

Figure 5: Algorithm for composing nudges to compute 
solutions with arbitrary LPMs  



utilize the trade-off tree for sorting final set of 
schedules.  

 

5. EXPERIMENTS AND RESULTS 

This section provides the experiment methodology 
and results evaluating LEAP performance. These 
experiments ranged from fully automated to human-
in-the-loop, and also from domain-specific to 
abstract, to demonstrate the generalizability of the 
results. In this paper we will present results of our 
fully automated experiments due to space constraints.  

To evaluate the plan quality, we compared the 
rankings of two planners; where the Default plan 
generator was unaltered GMS software and the other 
planner was LEAP with ability to nudge GMS to 
produce solutions more aligned with a given LPM. 
For any given mission requirement and an LPM we 
ran both planners to get the best ten (or the size of the 
smallest set of plans returned by any planner) plans 
according to target LPM. We then combined the best 
solutions into one set and ranked them, keeping track 
of the pedigree of the solutions. Our hypothesis was 
the LEAP plans, on average, would have better 
rankings than default GMS plans. 

5.1 Single Attribute Nudge 
Experiments 

Initially, we only performed nudging on the most 
important attribute of an LPM. We also performed the 
experiments for 5 different missions and all possible 
LPMs with our four attributes to demonstrate some 
generalizability of the results. Figure 6 shows the 
average of the best, average, and worst rankings over 
three of the 5 missions only. This is because for two 
of the five missions, LEAP did not produce a different 
set of solutions than GMS. Further investigation 
revealed that these two missions had a very tight 
solution space and not much flexibility in producing 
viable mission plans. For these two missions, 
different solution sets were produced only when 
FlightTime was the most important attribute. This 
was because the nudging method for FlightTime 
actually relaxed the constraints. 

For the other three missions, LEAP produced 
consistently diverse solutions and the best schedule 
was always LEAP (Rank #1). Furthermore, LEAP 
schedules were never ranked worse than GMS.  

When we analyzed the difference in plan quality 
per LPM, we discovered the following results: The 
difference in plan quality was most evident when the 
FlightTime attribute was the most important attribute 
in an LPM. In such cases, LEAP plans always 
outranked the GMS plans. However, this was not the 
case when RestQuality was the most important 
attribute. Often, GMS and LEAP shared the top 
ranking and sometimes even more than just the top 
slot. This is because GMS was biased to produce 
plans with best RestQuality. 

5.2 Multi-Attribute Nudge 
Experiments 

We ran experiments, where we combined multiple 
nudges using mission A22669, which was chosen due 
to the high diversity in solutions. Several cargo planes 
across many wings are available for this mission in 
the input scenario allowing many types of solutions.  
We computed schedules for all LPMs with multiple 
nudging. In most but FlightTime dominant (i.e., 
FlightTime being the most important attribute) 
LPMs, the multi-nudging further improved the 
quality of the plans. However, that was not the case 
for FlightTime dominant LPMs.  In Figure 7 we 
compare the plan quality for LEAP with single-nudge 
and multi-nudge using FlightTime>Lateness> 
RestQuality>CrewType LPM. The left table in Figure 
7 shows the ranking of GMS plans and plans 
produced by LEAP with FlightTime nudge only. 
Clearly the LEAP plans have better flight time, 
however they are also extremely late. The middle 
table compares new plans found using multiple 
nudges (LEAP*) in addition to single-nudge lateness,  
As seen in the middle table LEAP* plans are ranked 
worse than LEAP (single nudge). Using only strict 
preference models, to gain 5 minutes of flight time, 
the cargo could be delayed for days. Normally, the 
user would prefer to minimize flight time over 
lateness, but if the time difference between two 
missions was small, but the savings in Lateness was 
large, then switching preferences to favor Lateness 
was justified.  

To reflect that conditional preference, we 
employed the trade-off tree in Figure 3 (obtained 
from a learning session with our SME) to re-rank the 
schedules. The right table in Figure 7 shows the re-
ranked elements clearly demonstrating a more 
balanced lateness and flight-time in the top ranked 
elements which are products of multiple nudges. 



6. CONCLUSIONS 

In this paper we presented the LEAP system that 
learns and then applies user preferences to an 
automated logistic planner to produce plans that are 
more acceptable to users. The goal of the LEAP 
project was to demonstrate control over a fixed legacy 
mission planning system to produce plans that were 
better aligned with planners’ preferences, which were 
elicited through minimal querying to ensure 
continued use and applicability of existing systems by 
assuring they could be adapted to current needs and 
priorities of the stakeholders. 

The key contribution of this LEAP paper is to 
demonstrate the ability to nudge the automated 
planner without changing its code, through externally 
operating nudges. While implementations of nudges 
were specific to the GMS planner, we identified 
generic classes of nudges for controlling automated 
planners such as global configuration parameter 
setting and input modification. Designing nudges to 
influence the GMS planner to produce a plan in 
accordance with those preferences was the most 
challenging part of the project. In this effort, nudges 
for each preference attribute were designed manually. 
We succeeded in designing an algorithm to combine 

arbitrarily complex trade-off and priority-based 
preferences. In LEAP, we could rationally design 
nudges because we had the domain and planning 
algorithm expertise. If the planner is truly a black box, 
a machine learning approach to analyze the 
interaction space is recommended.  

In our experiments, we demonstrated that the best 
LEAP plans were always as good as the best GMS 
plans, and most of the time better. Due to space 
constraints, we demonstrated the efficacy of LEAP 
through automated experiments.  

Finally, we believe LEAP control approaches are 
applicable to beyond GMS planner. There are many 
deployed systems that have been certified as part of 
their development and deployment and, thus, are 
fixed in their operation without the benefits (and 
uncertainties) of on- or off-line learning.  Applying 
LEAP nudging strategies on other search-based 
planning and scheduling systems, such as HTN 
planners, and other domains would demonstrate the 
general applicability of our approach and show how 
the life of deployed systems can be extended. This 
will undoubtfully be valuable to many government 
and civil agencies that have been using legacy 
planning systems for decades. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 7: GMS, single-nudge (LEAP), multi-nudge (LEAP*) comparisons with and without the and trade-
off. 
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