
Nudging Automated Planners with Learned User Preferences

Fusun Yaman1 a, Thomas C Eskridge2 b Ron Scott1, Li Lin1, Jeff Miller1, Daniel Carpenter3
1BBN Technologies, Cambridge, MA, USA

2L3Harris Institute for Assured Information, Florida Institute of Technology, Melbourne, FL, USA
3Air Force Research Laboratory

fusun.yaman@rtx.com

Keywords: Planning, Scheduling, User Preference

Abstract: Automated planning tools play a large and expanding role in the function of many parts of our lives. The
complex nature of the planning problem and the increasing amount of information the human planner must
synthesize indicate that assistive automation must soon become the norm. Despite this, many existing
automated planners are incapable of producing plans that reflect the desires and expertise of their operators.
They do not have the direct ability to consider the operators’ priorities, nor can they exploit expert operational
knowledge that comes from human experience and not data systems. In this paper we present methods to learn
operator planning preferences and then nudge our automated logistic planner to produce plans that are better
aligned with operator preferences without changing the code of the planner.

1. INTRODUCTION

AI planner and schedulers are the earliest adopted AI
systems (c.f. Sacerdoti, 1977, Zweben and Fox,
1994). While planning and scheduling systems can
successfully search through complex and large search
spaces to identify valid plans, their outputs are rarely
adequate for the human planners. This is because the
AI captures hard constraints of the problem, ensuring
viability of the solution but oftentimes ignoring the
human preferences and perspective into what
constitutes a good solution. The complicated nature
of the implemented systems and the often life-critical
applications they serve makes it impractical or cost
prohibitive to modify the code to include the ever-
changing human perspective and situationally
specific mission priorities.

The objective of Learning Expertise from Air-
Mission Planners (LEAP) is to improve the usability
and performance of legacy mission planning systems
by identifying operator preferences with a minimum
number of queries and then externally affecting the
output of the mission planning system to produce
plans that are aligned with learned preferences

a https://orcid.org/0009-0005-4683-5235
b https://orcid.org/0000-0002-2117-5294

without changing the original planning algorithm’s
code base.

LEAP augments the automated planner using
expert, contextualized criteria gathered from
interactive learning sessions with subject matter
experts (SME)s, with a minimal number of questions.
In this paper we demonstrate that LEAP could
improve plan quality produced by a black box
mission planner through a small number of
interactions with human SMEs. Our contributions are
following:
1. Identified classes of preferences that could be

learned with minimal querying.
2. Developed a general Question & Answer (Q&A)

framework with a question generation strategy
that was based on reducing the uncertainty while
allowing both direct and indirect queries. Direct
queries explicitly queried knowledge, indirect
queries showed the user options and asked which
one was better.

3. Designed and implemented control nudges to
affect the learned preferences in the planner.
These nudges worked by modifying either
configuration parameters of the planner or the

input to the planner, never modifying the source
code of the planner.

4. Demonstrated significant performance
improvement in quality of plans with respect to
planner preferences in both automated
experiments and in-person SME evaluations.
LEAP plans were always at least as good as the
legacy planner, most of the time even better.

2. BACKGROUND

Figure 1 shows a high-level view of LEAP
components. The central oval represents the Learning
Controller, which is responsible for the run-time
management of the Interactive Learning process. The
Learning Controller chooses from one or more
scenarios produced off-line, with the help of our
SME, or can learn online from operator inputs. As a
session proceeds, Preference Learning and Query
Formulator are responsible for maintaining the model
of learned operator preferences and posing new
queries to the SME to refine the learned model. The
Query Formulator minimizes the number of queries
needed using different strategies. LEAP’s automated
planner is Global Mission Scheduler (GMS) to
automate cargo mission planning (Scott et al., 2009).
The Problem Formulator provides the Learning
Controller a mechanism to communicate preferences
and control nudges to the GMS Planner for a specific
planning problem. The SME from whom we are
learning preferences is pictured in the upper-left
quadrant and is queried by the Learning Controller
with the assistance of GUIs built to support an
interactive learning session. Next, we present the
background on the cargo mission planning domain,
GMS planning system, and an example use case.

2.1 Cargo Mission Planning Domain
& Planner

A cargo mission starts as a response to a set of
requirements, each specifying an amount of cargo
(and/or passengers) to be moved from a given POE
(point of embarkation) to a given POD (point of
debarkation), with the load ready to be picked up on
ALD (available to load date) and needing to be
delivered by LAD (latest arrival date). In the plans
generated, there is one mission per requirement, i.e.,
we are not considering aggregating cargo in a single
plane. In this domain the aircraft and personnel have
home stations to return after completing a mission.
Each hub in the domain is an airfield identified with
an ICAO code, a four-letter code designating
aerodromes around the world.

In this paper, we will use the GMS planner to create
the schedule and itinerary for a given mission.
Itinerary generation includes planning for all the
necessary refueling and crew rest stops, considering
the cargo loads on each leg (to ensure the validity of
the itinerary, since fuel is burned faster for heavier
loads, resulting in a shorter maximum range).
Examples of additional considerations are airfield
capacities, windows of operation, and crew duty day
limitations. GMS utilizes complex physics models to
compute realistic flight times and routes based on the
load size, fuel amount, fuel burn rate and runway
lengths etc.

The GMS Mission Detail Display shown in Figure
2 is a visualization of a planned mission. This
mission – mission A22651 (using an arbitrary naming
scheme) – has a pickup of cargo at Norfolk (KNGU)
followed by a drop-off of cargo at Djibouti (HDAM).
The rough itinerary shows what roles each stop plays
in the mission. The mission is currently planned to be
operated out of Charleston (KCHS), transiting to
Norfolk (KNGU) to pick up cargo, followed by stops
to both refuel and rest crew (denoted by the gas pump
icon and bed icon beneath the ports) in Lajes (LPLA)
and Bole (HAAB) before arriving at Djibouti. A
refuel and crew rest stop at Moron, Spain (LEMO) is
made on the way back to Charleston. The stops that
are required for this mission - the stops where cargo
is picked up or dropped off (or the aircraft/aircrew
originate or terminate) - are highlighted with darker
borders, while the remaining stops (with lighter
borders) can be replaced at will by the planner or the
automated scheduler.

Figure 1: High-level LEAP Components with
Automated Planner in gray/black, Learning Model in
green, Scenario Development in blue, and Human
Planning SME in orange.

Figure 2: GMS Mission Detail Display.

2.2 Example Cargo Mission
Planning Problem

We expand the example presented to illustrate the
choices a planner needs to make to plan a mission, to
describe how these choices might map to preferences
in a simple priority-based preference model and how
a few questions let us learn an expert’s preferences in
planning this mission.

The mission tasks a cargo plane to travel from its
home base to Norfolk Naval Air Station to pick cargo,
deliver it to Djibouti, and return home empty. Using
GMS, we computed four alternative plans. Each one
utilizes different intermediate stops for crew rest and
refueling. Three mission plans use augmented crew
(allowing longer non-stop flights). Table 1
summarizes some characteristics of the statistics for
each plan: “Lateness” (measured in hours) is the
difference between the actual delivery time and
required delivery time. Lateness is zero if the cargo
was delivered before or on time. “Crew Type” is
either basic or augmented), “Rest Quality”
(desirability rating), and finally “Flying Hours” the
time in flight which is used to estimate cost.

The “best” option for this mission depends on the
operator’s preferences. If the SME has the preference
F1 > F2 > F3 > F4, then he chooses option 3 as the
best plan. If the SME has the preference F2 > F1 >
F3 > F4, then he chooses option 4, with the basic
crew, even though the aircraft will be out for an extra
day. If the SME is more concerned about crew rest
locations, then he might have a preference such as F3
> F1 > F2 > F4, which ranks option 2 as highest. Even
from one example, it is possible to learn, at least
partially, what the SME’s preference might be. For
example, if the SME chooses option 3 over all others,
assuming less cost is preferred, LEAP can deduce that
the most important features are F1 and F2. Using this

partial model when planning a similar mission, LEAP
tasks the GMS planner to produce a plan with the
qualities of an augmented crew and the shortest time
away for the aircraft and crew.

3. PREFERENCES AND
LEARNING

Initially, we represented preferences using
lexicographic preference models (LPMs), which
enforced a total order on the attribute space (Colman
and Stirk, 1991, Ford et al., 1989, Westenberg and
Koele, 1994). LPMs also generalizes to continuous
valued variables by taking advantage of monotonic
properties. For example, we could represent that
shorter flight time is preferred over longer flight time.
Priority-based preference examples discussed in
previous section are all LPMs. Later on, we extend
our preference models with a trade-off representation
by combining the existing LPMs with a decision-tree-
like conditional representation.
Learning Algorithm: We utilized the CHARM
algorithm (Yaman et al. 2011) to learn the LPMs.
CHARM kept track of a set of LPMs consistent with
all the training data, which was a set of pairwise
comparisons on plan features. For example, Table 1
represents six pairwise plan comparisons for
CHARM.

Initially, CHARM considers all features as equally
important (rank of 1). At every iteration and for every
pair, CHARM predicts a winner as follows: Among
the features that were different in the comparisons,
the ones that have the smallest rank (the most salient)
votes to choose the preferred option. If the CHARM
prediction was correct (the option with the most votes
wins), then the ranks stay the same. Otherwise, the
ranks of the features that voted for the wrong option
were incremented, thus reducing their importance.
CHARM loops over the set of pairwise comparisons
until the ranks converge. Correctness and
convergence of the algorithm is guaranteed if the

Plans F1:
Lateness

F2: Crew
Type

F3: Rest
Quality

F4: Flying
Hours

#1 1 Augmented Reasonable 41
#2 2 Augmented Preferred 42
#3 0 Augmented Reasonable 43
#4 4 Basic Undesirable 44

Table 1: Mission Plan Options with Respect to
Defined Features of a Learned Model.

training data is noise and tie free. For LEAP, we
assumed that the SME choices were consistent, thus
the input to preference learning was noise free.

3.1 Trade-off Trees

 SME feedback highlighted the inflexibility of the
LPMs, which required we extend our preference
model representation. For example, if our SME
wanted to express: “Even if flight-time is more
important than lateness, if less than 0.5 hour gain in
flight time is causing more than 24 hours delay then
flight-time should be ignored in favor of lateness.” In
achieving this extension, we aimed for
computationally feasible and explainable
representations.

Our trade-off-based models use a hybrid
representation of decision trees and LPMs. Such
hybrid representations represent both conditional
preferences and trade-off concepts. Figure 3 is an
example trade-off tree where original LPM is in green
and a truncated LPM which ignores the flight-time is
in purple. Depending on the maximum lateness when
comparing a pair of plans, and the difference in flight
time and lateness, we might have ended up using
either the original LPM or the truncated one. In a
trade-off tree for two attributes A and B, where A is
declared more important than B in general, the
intermediate nodes could have branching conditions
on one of the following:
• A(+): Best value for the attribute A when

comparing two individuals, in this case two
plans.

• B(+): Best value for the attribute B.
• diff_A: Absolute value of difference in A values

in compared individuals.
• diff_B: Absolute value of difference in B values

in compared individuals.

While in theory we could learn tradeoffs between
every consecutive attribute in an LPM, our
interactions with the SME led us to believe that the
most important tradeoff relationship was between the
first and the second attributes in an LPM. Thus, we
focused on demonstrating the learning and
representation of tradeoff trees for the most important
two attributes only. Learning of tradeoff trees was
triggered when the planner picked a seemingly
inferior plan with respect to the most important
attribute as learned by the LPM, but superior with
respect to the second most important attribute (see
Figure 4). Whenever the SME made such a choice,

we created a vector with four values computed from
the original pair of plan attributes, and labeled it as an
example of ignoring the most important attribute. The
next section explains the algorithm that took these
data points and built a trade-off tree.

3.1.1 Learning trade-off trees

Our strategy in learning trade-off trees was based on
tracking the SME interactions with the LEAP ranking
GUI. Whenever the SME reordered the ranked
mission plans, LEAP recorded this exception and
generated data points (as explained in the previous
section) to feed into the well-known decision tree
building algorithm, C4.5. Using C4.5, we built a tree
incrementally as the user kept adding more
exceptions. As the exceptions updated in the trade-off
model, LEAP used the new model to rank the next set
of plans, thus, providing a life-long learning set up.
For our experiments, we limited the exception
recording and learning sessions to three sets of
missions. This was mostly to ensure consistent
interaction with the SME.

 One of the weaknesses of the C4.5 algorithm was
the boundary conditions computed for numeric nodes
being limited to the values that are seen in the training
data set. While we could have employed a search-
based method to pinpoint the exact threshold value
for these nodes, we decided, for the sake of not
bombarding the user with a series of implicit
questions, to ask the user directly to set the boundary

Figure 4: Generating trade-off tree attributes from
LPM.

Figure 3: Trade-off tree representation.

conditions. From our experience with SMEs, the user
would already have a trade-off value set in their mind.
A binary search over the value space just to prove that
we could eventually learn the correct value would
only frustrate the user and violate one of our main
goals. Thus, after the learning step was completed, we
presented the user an interactive trade-off tree
visualization where they could adjust the node
conditions. As the user adjusts the values
(overwriting previous tree), we re-compute the trade-
off tree and updated the visualization.

Sorting with trade-off trees could be tricky due to
loss of transitivity between pairwise comparisons
when pairs follow different branches. Loss of
transitivity could lead to circular ordering graph
which meant individual schedules could not be
sorted. To overcome this challenge, we implemented
a scoring function that counted the pairwise wins
when soring a set of plans. The tie breaker if there
were equal scores was the original LPM.

4. CONTROL: NUDGING
ALGORITHMS

We started with two kinds of nudges to make GMS
produce user preference aligned solutions: 1) modify
inputs (DS for modifications in scenario), and 2) set
configuration parameters (DC for modifications in

configuration) that would bias GMS towards desired
mission plans. Before discussing methods for
nudging (i.e., computing DS and DC), we will
summarize the GMS algorithm, which has two-steps.
In the first step, GMS computes the best stop over
locations for a pair of pick-up and drop-off locations.
This step uses an A-* algorithm where the guiding

metric is the total time spent on the route. The amount
of time spent on a rest stop is penalized if the rest stop
is not a favored base. Next, the landing and takeoff of
each leg in the route is computed, taking into account
availability of resources on the bases. The ingrained
biases in GMS algorithm order might not necessarily
align with preferences of the user creating challenges
in aligning GMS output with the user’s preferences.
The following is a list of nudging methods for single
attributes:
Lateness: Add a landing constraint for destination:
LandingTime<= dueDate. If there is no solution,
then relax the constraint by 6 hours until a solution is
found (△S).
Rest Quality: Reduce the time-delay in in the first-
tier bases to further distinguish them from lower tiers
(△C).
FlightTime: Set the time-delay in all stop over bases
to zero so the flight time dominates the total time
spent (△C).
CrewType: GMS has the option to choose the crew
type as input. If there is no solution for the preferred
type, then switch the value (△S).

We used the following generic algorithm shown
in Figure 5 for biasing GMS results. In this domain,
the Lateness and CrewType nudge could be combined
with every attribute because they added more
constraints. However, the FlightTime and
RestQuality nudges would be mutually exclusive
because they were part of the same optimization
function. Thus, we could only nudge the most
important one with respect to the LPM, while the
other could be nudged individually. This meant that
given an LPM with the four attributes listed above,
we could at most combine 3 of them.

To extend the algorithm for use with trade-off
trees, we keep the nudging algorithm the same, but

Figure 6: Summary of rankings over three
missions.

Figure 5: Algorithm for composing nudges to compute
solutions with arbitrary LPMs

utilize the trade-off tree for sorting final set of
schedules.

5. EXPERIMENTS AND RESULTS

This section provides the experiment methodology
and results evaluating LEAP performance. These
experiments ranged from fully automated to human-
in-the-loop, and also from domain-specific to
abstract, to demonstrate the generalizability of the
results. In this paper we will present results of our
fully automated experiments due to space constraints.

To evaluate the plan quality, we compared the
rankings of two planners; where the Default plan
generator was unaltered GMS software and the other
planner was LEAP with ability to nudge GMS to
produce solutions more aligned with a given LPM.
For any given mission requirement and an LPM we
ran both planners to get the best ten (or the size of the
smallest set of plans returned by any planner) plans
according to target LPM. We then combined the best
solutions into one set and ranked them, keeping track
of the pedigree of the solutions. Our hypothesis was
the LEAP plans, on average, would have better
rankings than default GMS plans.

5.1 Single Attribute Nudge
Experiments

Initially, we only performed nudging on the most
important attribute of an LPM. We also performed the
experiments for 5 different missions and all possible
LPMs with our four attributes to demonstrate some
generalizability of the results. Figure 6 shows the
average of the best, average, and worst rankings over
three of the 5 missions only. This is because for two
of the five missions, LEAP did not produce a different
set of solutions than GMS. Further investigation
revealed that these two missions had a very tight
solution space and not much flexibility in producing
viable mission plans. For these two missions,
different solution sets were produced only when
FlightTime was the most important attribute. This
was because the nudging method for FlightTime
actually relaxed the constraints.

For the other three missions, LEAP produced
consistently diverse solutions and the best schedule
was always LEAP (Rank #1). Furthermore, LEAP
schedules were never ranked worse than GMS.

When we analyzed the difference in plan quality
per LPM, we discovered the following results: The
difference in plan quality was most evident when the
FlightTime attribute was the most important attribute
in an LPM. In such cases, LEAP plans always
outranked the GMS plans. However, this was not the
case when RestQuality was the most important
attribute. Often, GMS and LEAP shared the top
ranking and sometimes even more than just the top
slot. This is because GMS was biased to produce
plans with best RestQuality.

5.2 Multi-Attribute Nudge
Experiments

We ran experiments, where we combined multiple
nudges using mission A22669, which was chosen due
to the high diversity in solutions. Several cargo planes
across many wings are available for this mission in
the input scenario allowing many types of solutions.
We computed schedules for all LPMs with multiple
nudging. In most but FlightTime dominant (i.e.,
FlightTime being the most important attribute)
LPMs, the multi-nudging further improved the
quality of the plans. However, that was not the case
for FlightTime dominant LPMs. In Figure 7 we
compare the plan quality for LEAP with single-nudge
and multi-nudge using FlightTime>Lateness>
RestQuality>CrewType LPM. The left table in Figure
7 shows the ranking of GMS plans and plans
produced by LEAP with FlightTime nudge only.
Clearly the LEAP plans have better flight time,
however they are also extremely late. The middle
table compares new plans found using multiple
nudges (LEAP*) in addition to single-nudge lateness,
As seen in the middle table LEAP* plans are ranked
worse than LEAP (single nudge). Using only strict
preference models, to gain 5 minutes of flight time,
the cargo could be delayed for days. Normally, the
user would prefer to minimize flight time over
lateness, but if the time difference between two
missions was small, but the savings in Lateness was
large, then switching preferences to favor Lateness
was justified.

To reflect that conditional preference, we
employed the trade-off tree in Figure 3 (obtained
from a learning session with our SME) to re-rank the
schedules. The right table in Figure 7 shows the re-
ranked elements clearly demonstrating a more
balanced lateness and flight-time in the top ranked
elements which are products of multiple nudges.

6. CONCLUSIONS

In this paper we presented the LEAP system that
learns and then applies user preferences to an
automated logistic planner to produce plans that are
more acceptable to users. The goal of the LEAP
project was to demonstrate control over a fixed legacy
mission planning system to produce plans that were
better aligned with planners’ preferences, which were
elicited through minimal querying to ensure
continued use and applicability of existing systems by
assuring they could be adapted to current needs and
priorities of the stakeholders.

The key contribution of this LEAP paper is to
demonstrate the ability to nudge the automated
planner without changing its code, through externally
operating nudges. While implementations of nudges
were specific to the GMS planner, we identified
generic classes of nudges for controlling automated
planners such as global configuration parameter
setting and input modification. Designing nudges to
influence the GMS planner to produce a plan in
accordance with those preferences was the most
challenging part of the project. In this effort, nudges
for each preference attribute were designed manually.
We succeeded in designing an algorithm to combine

arbitrarily complex trade-off and priority-based
preferences. In LEAP, we could rationally design
nudges because we had the domain and planning
algorithm expertise. If the planner is truly a black box,
a machine learning approach to analyze the
interaction space is recommended.

In our experiments, we demonstrated that the best
LEAP plans were always as good as the best GMS
plans, and most of the time better. Due to space
constraints, we demonstrated the efficacy of LEAP
through automated experiments.

Finally, we believe LEAP control approaches are
applicable to beyond GMS planner. There are many
deployed systems that have been certified as part of
their development and deployment and, thus, are
fixed in their operation without the benefits (and
uncertainties) of on- or off-line learning. Applying
LEAP nudging strategies on other search-based
planning and scheduling systems, such as HTN
planners, and other domains would demonstrate the
general applicability of our approach and show how
the life of deployed systems can be extended. This
will undoubtfully be valuable to many government
and civil agencies that have been using legacy
planning systems for decades.

Figure 7: GMS, single-nudge (LEAP), multi-nudge (LEAP*) comparisons with and without the and trade-
off.

AKNOWLEDGEMENTS

Work sponsored by AFRL under contract

FA8750-21-C-1005; the views and conclusions
contained in this document are those of the authors
and not AFRL or the U.S. Government.

REFERENCES

Colman, A.M. and Stirk, J.A. (1991). Singleton bias and
lexicographic preferences among equally valued
alternatives. Journal of Economic Behavior &
Organization, 40(4):337–351.

Ford, J.K., Schmitt, N., Schechtman, S.L.,Hults, B.M., and
Doherty, M.L. (1989). Process tracing methods:
contributions, problems and neglected research issues.
Organizational Behavior and Human Decision
Processes, 43:75–117.

Sacerdoti, E.D. (1977). A Structure for Plans and
Behavior. Elsevier.

Scott, R., Roth, E., Truxler, R., Ostwald, J., & Wampler, J.
2009. Techniques for Effective Collaborative
Automation for Air Mission Replanning. In
Proceedings of the Human Factors and Ergonomics
Society Annual Meeting, 53(4), 202–206.

Westenberg, M.R.M. and Koele, P. 1994. Multi-attribute
evaluation processes: methodological and conceptual
issues. Acta Psychologica, 87:65–84.

Yaman, F., Walsh, T.J., Littman, M.L., desJardins, M.
2011. Democratic approximation of lexicographic
preference models. Artificial Intelligence, 175(7-8):
1290-1307

Zweben, M. and Fox, M. 1994. Intelligent scheduling.
Morgan Kaufmann Publishers Inc.

DISTRIBUTION A. Approved for public release: distribution unlimited. Case Number
AFRL-2023-5571. This document does not contain technology or Technical Data
controlled under either the U.S. International Traffic in Arms Regulations or the U.S.
Export Administration Regulations.

