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Abstract. Neurotechnology promises cognitive enhancement as a way
for humanity to extend its information-processing capability without in-
vasive brain surgeries and pharmacological side effects. Notable advance-
ments in this field have achieved high-bandwidth wireless communica-
tion interfaces between human brains and computers. Human-centered
design proposes that human-technology experiences should focus on hu-
man needs. This paper explains how design thinking has been applied
as a methodology to design the user experience of an attention-based
neurotechnology solution that leverages artificial intelligence (AI) to en-
hance the flow performance and cognitive well-being of knowledge work-
ers (KWs). Using the d.school design thinking process, we started with
a mindset that favored empathy, creative confidence, and ambiguity to
discover and define the problems confronting KWs. After diverging with
deep empathy and converging on user personas and problem definition,
the design thinking process branched into an iterative prototyping cycle
that transformed our initial ideas into a human-centered AI-powered neu-
rotechnology. We utilized the functional prototypes for testing assump-
tions and performing a comprehensive design evaluation. Our final solu-
tion incorporated a gamified user interface with visual elements, affor-
dances, and a coherent human-AI experience. Expert software evaluators
conducted a series of cognitive walkthroughs and heuristic evaluations by
simulating the user personas and performing an end-to-end user scenario
with the prototype. The design thinking process generated a neurotech-
nology service with a human-AI experience that enables KWs to achieve
healthy flow performance while enhancing cognitive well-being.
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1 Introduction

A growing body of literature on neurotechnology recognizes the importance of
bio-sensing and biofeedback [44, 40, 17]. In this paper, the term ‘neurotechnology’
refers to the methods and instruments that enable a direct connection with the
nervous system [34]. Recent studies by computational neuroscientists have shown
how neurotechnologies use bio-sensing electrodes to record signals from the brain
and transform them into biofeedback displays of useful control commands and
stimuli [31, 24]. This exploratory research focused on human knowledge workers
(KWs) and attention-based neurotechnology-as-a-service shown in Figure 1.

OPERATOR STATES

Cognitive State Affective State

Disengaged Engaged Bored Neutral Happy Anxious

BIO-SIGNALS
NUDGES

FLOW

EXPERIENCE

1

2

4

5CONTEXT3

Fig. 1. FCA bio-senses, contextualizes, and nudges KWs into flow

In this work, we design a human-aware and context-aware neurotechnology
artificial intelligence (AI) known as the Flow Choice Architecture (FCA)
that “nudges” [51, 46] KWs to increase the healthy time that they spend in
the flow state [10, 11, 13]. Our design thinking story outlines the development
of FCA’s human-AI experience to strengthen the cognitive abilities of KWs by
deepening their levels of cognitive work rather than automating their jobs.

KWs are essential to maintain our standard of living and quality of life.
Their well-being is paramount to economic development and human advance-
ment. Since the pandemic caused by the coronavirus disease, KWs have expe-
rienced an accelerated shift towards remote working [3] in virtual and hybrid
work environments [49] that are augmented by AI [54]. To remain competitive,
KWs need to create more value in less time while improving their performance
and maintaining their well-being.

In Section 2, “Background,” we review the literature on cognitive enhance-
ment, neurofeedback, and healthy flow performance. This section analyzes how
neurofeedback can be adopted to help KWs effortlessly focus their attention on
the task stimulus during knowledge work.
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In Section 3, “Design Thinking,” we describe the phases of the design thinking
process used in this paper. We empathize by conducting remote, semi-structured
interviews with 12 KWs to generate qualitative results, quotes, and insights
about their personal experiences, expectations, and preferences related to knowl-
edge work. We validate the interview results by conducting an online survey
with 468 participants. We articulate the results from a need-finding synthesis,
which were consistent problem statements evidenced by supporting user per-
sonas. These data-driven design assets guided the future steps of the design
thinking process. We explore the qualitative dataset to discover commonly used
vocabulary and consolidate an intuitive information architecture. We adopt rapid
prototyping techniques to build a functional FCA for testing and evaluation.

In Section 4, “Evaluation,” we conduct cognitive walkthroughs and heuristic
evaluations of the prototype with six evaluators who are subject matter experts
in knowledge work and software engineering. The evaluation results generated
improvements for future development.

In Section 5, “Results,” we present the findings from the cognitive walk-
throughs and heuristic evaluations. The evaluation results highlight how FCA
succeeded on the tasks and identify areas for improvement.

In Section 6, “Discussion,” we explain the implications of the findings and
discuss recommendations for improving the learnability and usability of FCA.

In Section 7, “Conclusion,”, we conclude with the research outcomes. We
discuss the next steps to advance the FCA neurotechnology prototype to become
a beneficial tool for the cognitive enhancement of KWs.

2 Theoretical Background

FCA is a bio-sensing and contextual bio-feedback nudging system that enhances
KW flow performance and cognitive well-being. FCA contributes to bridging the
gap of growing global demand for more creative and productive human output in
knowledge-based industries by helping KWs perform their cognitive work with
fewer distractions and attentional load. The references synthesized in this sec-
tion identify relevant findings from scholarly sources on cognitive enhancement,
neurofeedback, and healthy flow performance.

2.1 Cognitive Enhancement

Cognitive enhancement aims to reach one’s personal best without necessarily
outperforming others [9]. Bostrom and Sandberg [7] define cognitive enhance-
ment as “ the amplification or extension of core capacities of the mind through
improvement or augmentation of internal or external information processing
systems.” Contemporary cognitive enhancement methods involve an array of
nootropics, brain implants, brain training games, neurofeedback, and transcra-
nial electric stimulation devices for modifying brain function [19, 21].
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Despite the many positive effects of cognitive enhancement, there are likely
negative aspects to be considered. Given that cognitive enhancements are likely
to be used for extended periods across the lifespan, the long-term effectiveness
and safety are crucial concerns to be determined.

In the knowledge economy, the value of human capital far outweighs more
traditional, tangible forms, such as plants and equipment [35]. For this pri-
mary reason, we regarded the cognitive performance and well-being of KWs as
quintessential elements of organizational success. We value the KW’s happiness
before, during, and after knowledge work in terms of its immediate and long-
term impacts on the KW. By doing so, we designed FCA to guide KWs towards
the flow state and enhance cognitive well-being through well-timed nudges and
psychological flexibility routines that cultivate mindfulness and commitment.

2.2 Healthy Flow Performance

Csikszentmihalyi [10] defined flow as a state of concentration so focused that
it amounts to absolute absorption in an activity. Concentration is a trainable
cognitive state that may aid in the activation and maintenance of flow during
goal-directed behaviors [48]. We hypothesize that concentration during knowl-
edge work tends to activate flow. To this end, we designed FCA to train KWs
to regulate their concentration and benefit from the positive effects experienced
during and after flow.

On the contrary, fatigue is the debilitating cognitive state associated with
feeling exhausted, sleepy, and tired, which diminishes the ability to function
efficiently on a task [18]. Although work may be completed under conditions
of high cognitive fatigue, the quality of performance and the quality of work
outcomes tend to decrease [29]. Basic research found that an increase in cog-
nitive fatigue correlated with increased reaction times, misses and false alarms,
and time-on-task in an attention-dependent task [6]. Matthews and Desmond
[32] observed the detrimental impact of cognitive fatigue on performance during
highly demanding cognitive tasks. This observation makes the management of
task demand an essential aspect for FCA to perform successfully and effectively.

Despite the rich literature on the topic of flow, these studies have been pri-
marily qualitative inductive analyses [47]. Ambiguities exist in its definitions and
inconsistencies are evident in how flow is operationalized [1]. In this research,
we operationalized flow with the nine components defined by Csikszentmihalyi
[10], which include challenge-skill balance, action-awareness merging, clear goals,
unambiguous feedback, concentration on the task at hand, sense of control, loss
of self-consciousness, time-transformation, and an autotelic experience.

Flow occurs when individuals, acting solo or in teams, operate with optimal
concentration, which yields a heightened sense of satisfaction, intrinsic motiva-
tion, and peak performance [10, 12, 37]. In this work, we claim that healthy flow
performance is not the excessive attainment of the flow state, which may lead
to exhaustion and burnout, but sufficient flow to accomplish one’s work while
maintaining cognitive and emotional well-being.



Design Thinking the Human-AI Experience of Neurotechnology 5

2.3 Neurofeedback

Within the neurofeedback domain, training protocols provide audio-visual sig-
nals based on site-specific electroencephalography (EEG) frequency bands or
combinations thereof [31]. EEG data make up a reliable bio-signal stream that
may reify cognitive performance into measurable neural activity. FCA tests this
hypothesis with its neurofeedback AI technology for flow augmentation by build-
ing upon other neurofeedback interventions grounded in the training of respon-
dent and operant behaviors [17]. The main distinction between FCA and other
neurofeedback tools is the use of intuitive and comprehensible nudges that reduce
cognitive workload rather than signals that require monitoring and decoding [40].

There are varied results from experiments that correlate EEG to human per-
formance. In a study by Katahira et al. [24], participants performed arithmetic
tasks of varying difficulty levels to induce three conditions: flow, boredom, and
overload. The researchers analyzed the variance of EEG data between the three
conditions. Results from the study demonstrated that theta power in the brain’s
frontal areas was higher in the flow and overload conditions compared to the
boredom condition. According to Katahira et al. [24], high theta power reflects
the subjective states of maximum cognitive control and absorption in the task.
The flow condition exhibited decreased alpha activity compared to the overload
condition, which suggested a relatively low cognitive load on working memory
during flow. This study concluded that the flow state was indicated by high
frontal theta power and moderate alpha power [24].

Researchers have explored artificial neural networks and deep learning tech-
niques to classify operator states using EEG signals. Wilson et al. [56] per-
formed two-class cognitive workload classification based on artificial neural net-
works, and achieved 86% classification accuracy. Tripathi et al. [53] used a deep
neural network and a convolutional neural network (CNN) to classify valence
and arousal measures using EEG signals from the DEAP dataset [27]. Their
neural networks provided 58% and 56% classification accuracy for valence and
arousal, respectively, and their CNN model provided 67% and 58% for valence
and arousal, respectively. Zheng et al. [57] used a deep neural network archi-
tecture to process EEG and eye movement features. The fusion of multimodal
bio-signals with deep neural networks significantly enhanced the model’s per-
formance compared with a single modality, and the best mean accuracy of 85%
was achieved for four emotional states [57]. Eskridge & Weekes [20] used the
SEED-IV EEG dataset [57] to run dimensionality reduction on the power spec-
tral density features from five EEG frequency bands using linear discriminant
analysis followed by an artificial neural network to gain average overall classifi-
cation accuracy of 99%.

This paper discusses the use of EEG bio-signals in the form of EEG power
indices as reliable indicators for effort, concentration, relaxation, absorption,
fatigue, arousal, and valence during knowledge work tasks. We computed seven
EEG power indices for use in the analysis from evidence-based correlates in
the literature of computational neuroscience [25, 5, 22, 30, 23, 22, 43, 5, 50, 36, 16,
6, 15, 8, 4, 14, 41, 45, 52, 2, 45, 26].
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3 Design Thinking the Human-AI Experience

In this work, knowledge workers (KWs) are human workers who perform com-
plex deep work [38] that requires considerable amounts of concentration and
creativity. We adopted the d.school design thinking process model [42] in Fig-
ure 2 to actively engage the participation of KWs in the design and evaluation
of FCA. The Institutional Review Board (IRB) at Florida Tech approved our
research with human subjects.

Fig. 2. The Five Stages of the d.school Design Thinking Process Model

3.1 Stage 1 - Empathize

In the “Empathize” stage, we formulated an understanding of potential FCA
users, i.e., KWs seeking flow experiences. We conducted remote, semi-structured,
one-on-one interviews with KWs and subsequently applied the interview results
to develop a cross-sectional survey with KWs to generate quantitative data and
validate insights from the interviews.

We conducted the interviews with a sample of 12 KWs (6 females, age M =
29.5 years [SD = 7.91]) who represented KWs from diverse domains in engineer-
ing, creative writing, project management, supply chain management, research,
and philosophy. The interview study was generative in nature and centered on
building a deep empathy with KWs as the starting point for the design thinking
method of the innovation process.

The problem under investigation was: how might we describe the flow per-
formance of KWs according to their tasks, workspaces, tools, and heuristics? We
hypothesized that KWs explore and exploit their factors of production to maxi-
mize performance even though stressors may negatively impact their well-being.
To test our claim, we pursued the following research questions. In which domains
do KWs work? What types of tasks do KWs perform? Where do KWs perform
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their work? Which heuristics and tools do KWs use? What is flow at work for
KWs? What is effective work time for KWs? How does KW productivity impact
well-being?

The interview questions were derived from the research questions and grouped
into the following ten sections: activity tracking, favorite activities, knowledge
work, productivity, work tracking scenario, task definition & execution, flow at
work, distraction, traction, and changing work states. After the interviews, we
applied quantitative content analysis and qualitative thematic analysis to syn-
thesize the results. The process generated a conceptual framework for classifying
KWs based on distinct personal traits and work preferences. User personas rel-
evant to productivity multiplier tools help humanize FCA.

The KWs worked in three main work domains, i.e., sciences, business, and
arts. The types of knowledge work tasks that the KWs performed included writ-
ing, research, coding, design, documentation, reading, finding, visualization, col-
laboration, and managing subordinates. The types of tasks varied across work
domains. The foremost task features that KWs considered included urgency,
duration, challenge, importance, sensitivity, and priority.

KWs worked in the office, lab, cubicle, and living room. Participants reported
the shift to working from home due to the COVID-19 pandemic. KWs described
their efforts to create a distraction-free environment by turning off or stowing
phones, wearing headphones, listening to music, and closing or locking doors.
They take breaks to relax, relieve stress, refocus, eat, drink, and deflate.

KWs reported that flow was a zone, work mode, or head-space that occurs
naturally and is goal-oriented, structure-driven, and distraction-free. The KWs
supported the need for clear task goals and complete task absorption to achieve
flow. Most of them experience a loss of self-consciousness and a faster passage
of time during flow. KWs reported a positive feeling of satisfaction after flow.

KWs identified detrimental impacts of productivity on their well-being, e.g.,
procrastination, sleep issues, and developing hyper-focus and tunnel vision. Sev-
eral KWs admitted to missing lunches, not drinking water, ignoring eating, and
eating too quickly. Others complained about poor posture, being stationary at
the desk, and lack of exercise. On the other hand, KWs identified some posi-
tive impacts of productivity on their well-being. KWs reported feeling in a better
mood, confident, happy, and more energetic. Some KWs used the positive energy
as an opportunity to perform activities outside of work.

A key finding was that KWs considered flow at work in terms of being in
a zone and head-space when they are focused on making progress, completing
tasks, and achieving results without interruptions and distractions. This find-
ing has significant implications for the design of FCA to increase attention on
the task at hand and mitigate external distractions. One of the most important
findings to emerge from this study was that KWs balance the positive and nega-
tive impacts of productivity with their well-being to seek growth and happiness,
which suggests a role for FCA in promoting healthy flow and work-life balance.

We conducted the cross-sectional survey with 468 KWs from MTurk to gen-
erate quantitative data, validate earlier insights, and understand what makes
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flow enjoyable for individual KSs. We used the survey results to identify user
preferences and qualify excerpts for the user personas. The survey was random-
ized and cross-sectional in design to build inclusion across KWs from the three
main work domains, i.e., sciences, business, and arts.

The survey yielded significant effects of specific situations on the KW’s en-
joyment of a task. Success on the initial attempt had an extremely positive effect
on the KW’s enjoyment of the task. The same positive effect occurred during
situations of consistent and unexpected success over time. Contrary to expecta-
tions, KWs tended to embrace failure since consistent failure over time also has
a significantly positive effect on the KW’s enjoyment. The use of incentives for
success also had a significantly positive effect on the KW’s enjoyment.

In terms of how frequently KWs experienced the state of flow during knowl-
edge work, consistent failure over time had a significantly negative effect on the
KW’s enjoyment. During flow, KWs felt that failure on the initial attempt had
a significantly negative effect on the KW’s enjoyment. Similarly, random failure
over time had a significantly negative effect on the KW’s enjoyment.

3.2 Stage 2 - Define

In the “Define” stage, we synthesized the research from the interviews and survey
to discover where KWs were experiencing work-related problems that interfered
with their performance and well-being. Our need-finding synthesis generated
the user persona in Figure 3 and a set of user Point-Of-View (POV) problem
statements, which guided the remaining stages of the design thinking process.

Fig. 3. The Software Engineer User Persona - Kevin Small



Design Thinking the Human-AI Experience of Neurotechnology 9

The following actionable Point-Of-View (POV) statements formulated con-
textualized problems confronting KWs and identified their needs and insights.

1. Before knowledge work, KWs need a way to prepare for work because they
tend to procrastinate and lose focus without precise tasks or goals.

2. During knowledge work, KWs need a way to stay engaged with work because
they tend to become distracted and stressed over lost productive time.

3. After knowledge work, KWs need a way to account for and reflect on work
accomplishments because there are key work patterns to learn.

4. During boring knowledge work, KWs need a way to stimulate and challenge
themselves because they tend to lose motivation and underperform.

5. During overwhelming knowledge work, KWs need a way to relax and calm
down because they tend to become anxious and underperform.

6. During enjoyable knowledge work, KWs need encouragement and reinforce-
ment because they tend to perform better and achieve more healthy flow.

3.3 Stage 3 - Ideate

In the “Ideate” stage, we generated creative ideas from the macro-scale to the
micro-scale. We used AI to mine the qualitative datasets from the interviews and
surveys to discover useful vocabulary, labels, and interactions that were recog-
nizable and appealing to KWs. We abstracted the user scenarios into a generic
task list where the interactions and user interface (UI) modeled a “minimalist”
version of a task management system. We ideated the FCA through the lens of
safe, explainable, and responsible AI.

The design philosophy of FCA’s user experience exploited wearable tech-
nology that is non-invasive, lightweight, and easy to use. Once we obtained a
comfortable hardware setup, the FCA operator needed a simple and effective
neurofeedback UI. Our approach to FCA’s UI design leveraged research about
the operator’s biases, behaviors, and preferences. Three “flow principles” were
incorporated as fundamental tenets of FCA’s design philosophy.

1. Dynamic Flow - In flow, time stands still. The dynamic visualization
of deep flow was represented as minimal motion, whereas shallow flow was
moderate motion, and distraction was significant motion.

2. Cumulative Flow - More flow yields better work. FCA rewarded
the operator with flow points based on the flow state of each epoch. The
cumulative visualization of flow applied a heuristic that humans employ,
i.e., more is better.

3. Deep Flow - Never interrupt deep flow. FCA used a recommender
system that delivered nudges based on specific learned criteria or when the
system “explored” and tried something novel to learn new knowledge. How-
ever, a rule was that FCA would never interrupt “deep flow.”

We leveraged the qualitative datasets from the interviews and surveys to
construct the information architecture with abstracted keywords, i.e., profile,
workspace, device, project, task, and work session, which formed the basis of
the functional user requirements for the prototypes.
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3.4 Stage 4 - Prototype

In the “Prototype” stage, we incrementally built out FCA by diverging and
converging on multiple ideas. We developed four prototypes with different capa-
bilities to answer questions and clarify risky assumptions.

Prototype 1 tested facial expressions as operator state indicators. One of the
riskiest components of our research plan was discovering how to classify human
bio-signals to provide reliable operator state indicators. This question became a
core focus of Prototype 1, which focused on extracting steady streams of facial
landmarks and action units to train models that predict the operator’s state.
Prototype 1 provided insights into which states the predictive model computed
from the camera feed overlay of facial landmarks.

Fig. 4. Prototype 1 classifying Facial Expression Bio-signals

Figure 4 shows the near real-time classification of facial expression bio-signals
from an operator performing an experiment watching emotionally-charged videos.
This initial prototype demonstrated that it was feasible to classify operator states
given the facial expression bio-signal time series vector. After proving that it was
possible to classify operator states with a measure of reliability using facial bio-
signals, we advanced to the most challenging aspect of our research plan. We
needed to discover how to simultaneously classify multiple bio-signals to provide
reliable indicators of operator state.

Prototype 2 tested the integration of multimodal bio-signals from wearables
devices. We selected two different wearable devices based on their capabilities.
Muse headbands are affordable, commercially available off-the-shelf EEG devices
developed by InteraXon Inc. Muse headbands aimed to enhance meditation prac-
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tice by combining instruction and tracking with EEG sensor biofeedback during
mindfulness exercises [28]. The Empatica E4 is a wrist-worn photoplethysmog-
raphy (PPG) bio-sensor device that Empatica Inc developed. The E4 calculated
heart rate, inter-beat-interval (IBI), and skin temperature [33].

Prototype 2 demonstrated that it was feasible to classify operator states from
multimodal bio-signals. However, Prototype 2 was too slow to reach a consensus
due to the various bio-signals with different timescales.

Fig. 5. Prototype 2 showing an Operator performing a Mirroring Experiment

Prototype 3 in Figure 6 tested EEG bio-signals as operator state indicators.
Prototype 3 proved that it was feasible to compute operator states from EEG
bio-signals. This finding supported our decision to focus on neurofeedback.

Fig. 6. Prototype 3 showing computed EEG Indices & Task Interval Markers
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3.5 Stage 5 - Test

In the “Test” stage, we evaluated the effectiveness of the prototypes. We con-
ducted cognitive walkthroughs and heuristic evaluations with KWs to inform
the design of the human-AI experience. We developed Prototype 4 in Figure 7
to evaluate FCA as a gamified neurotechnology in cognitive walkthroughs and
heuristic evaluations.

Fig. 7. Prototype 4 showing features of the FCA UI

The cognitive walkthrough was a detailed, step-by-step evaluation of FCA on
a set of tasks. The purpose of the walkthrough was to empathize with KWs to
uncover design errors in the FCA UI that would interfere with their learning by
exploration and cause confusion during interactions. Examples of such errors are
poorly worded labels, misguiding layout flows, and inadequate feedback about
the consequences of an action.

The heuristic evaluations applied Jakob Nielsen’s usability heuristics [39].
The heuristic evaluations identified usability issues in the FCA UI for remedi-
ation. Responses from the evaluators were comments on the violations of the
usability guidelines supplemented by severity ratings.

4 Evaluation

4.1 Methodology

The remote, one-on-one cognitive walkthroughs were conducted by 3 KW eval-
uators (2 females, age M = 26.3 years [SD = 4.61]). The evaluators simulated
the personas and evaluated the FCA prototype from the perspective of the po-
tential users. KWs started FCA and configured it to plan and complete tasks
in a work session. After interpreting FCA’s UI and responding to nudges, the
KWs completed and reviewed the work session, then shut down FCA. The KWs
evaluated FCA by describing how the UI fulfilled each task.
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The reseacher administered the cognitive walkthroughs. In the preparatory
phase, the evaluator became familiar with the assigned user persona. The user
personas from the “Define” phase allowed the evaluators to judge what needs,
knowledge, preferences, and limitations the users may have relative to the tasks.
During the walkthrough briefing, the researcher discussed the tasks to be ana-
lyzed. The evaluator interacted with FCA on the following tasks by describing
how the UI performed on each task.

1. Startup FCA
2. Calibrate FCA
3. Plan a new work session
4. Start a work session
5. Complete a task
6. Interpret the signals during a task
7. Respond to the nudges during a task
8. Complete a work session
9. Review a completed work session
10. Shut down FCA

In the analysis phase of the cognitive walkthrough, the evaluators examined
each action in the solution path and attempted to tell a credible story that
explained why the expected users would choose that action. Credible stories
were based on assumptions about the background knowledge of users and the
problem-solving process that enables the user to guess the correct action.

If there was a major problem with the UI, the researcher noted the problem
and proceeded to the next task as though the correct action had been performed.
The state of the UI at the beginning of each action was always assumed to be
the correct state and never the state after an incorrect action was performed.

The remote, one-on-one heuristic evaluations were conducted by 3 evaluators
(3 males, age M = 39.0 years [SD = 17.32]). The evaluators simulated the Kevin
Small persona over ten tasks. The KWs started FCA and configured it to plan
and complete a work session. After interpreting FCA’s UI and responding to
nudges, they completed and reviewed the work session and then shut down FCA.
The KWs evaluated FCA by describing how the UI fulfilled each task.

The preparatory phase of the remote heuristic evaluations involved a series of
questions about FCA’s compliance with Jakob Nielsen’s ten usability heuristics.
During the evaluation briefing, the researcher discussed the ten tasks above to
be analyzed.

During the heuristic evaluations, the evaluators reviewed, interacted with,
and evaluated FCA on the given tasks by describing how the UI performed
on each task and then performing the correct action sequence to complete each
task. In the analysis phase, the evaluators examined each task with each usability
heuristic. If there were violations of the design guidelines, the evaluator made a
descriptive comment and associated it with the task and the heuristic.
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The researcher reviewed the comments with the evaluators where clarity was
necessary. If there was a problem with the UI, the researcher noted the problem
and proceeded to the next task, as if the correct action had been performed.
The UI state at the beginning of each action was always assumed to be the
correct state. The evaluators’ comments were tabulated and severity ratings
were assigned to each comment. In addition to the heuristic, each comment was
categorized by the type of design error.

5 Results

The cognitive walkthroughs generated the following key findings and recom-
mendations. We recommended button groups to replace the slider bars in the
user profile, which negatively affected the configuration of FCA. We proposed to
clarify what the UI does by changing the label “Manage Tasks” to “Plan Work-
session.” There should be a feedback screen that presents a meaningful summary
of the work accomplished in the work session.

Figure 8 shows the tabulated results from the heuristic evaluations. There
were 82 design issues covering the ten usability heuristics over the ten tasks. The
totals indicated which tasks and heuristics contained a majority of the issues.

STEPS

HEURISTICS 1 2 3 4 5 6 7 8 9 10 TOTALS

Visibility of system status 1 3 4 1 3 2 2 4 20

Match between system and the real world 1 2 3 2 1 1 3 13

User control and freedom 3 1 1 1 1 1 1 9

Consistency and standards 1 4 1 1 1 3 11

Error prevention 2 2 1 2 1 1 9

Recognition rather than recall 1 2 1 4

Flexibility and efficiency of use 1 1 1 3

Aesthetic and minimalist design 1 1

Help users recognize, diagnose, and recover from errors 1 1 1 3

Help and documentation 2 1 2 1 1 1 1 9

TOTALS 8 14 15 7 9 6 6 1 14 2 82

Fig. 8. Summary of Design Issues from the Heuristic Evaluations
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6 Discussion

The relevance of flow among KWs strongly supported our findings. KWs con-
sidered flow at work in terms of being in a zone and head-space when they are
focused on making progress, completing tasks, and achieving results without in-
terruptions and distractions. The need for flow has significant implications for
understanding how to design FCA in a way that increases their focused attention
and mitigates distractions.

The cognitive walkthrough rationalized the design problems so that the FCA
prototype would promote the discoverability and learnability of its users while
providing adequate feedback on their tasks early in the implementation. Overall
the cognitive walkthroughs demonstrated that FCA fits the KW’s mental model.
The concepts of user accounts, profiles, workspaces, devices, and tasks were all
very familiar to the evaluators. The streamlined user flows to complete the UI
interaction tasks guided the KWs from initial use onward.

The top-3 tasks that contained the majority of the design issues were tasks 3,
2, and 9, i.e., “Plan a new work session,” “configure FCA,” and “Review a com-
pleted work session.” The top-3 heuristics that exhibited the highest frequencies
were “Visibility of system status,” “Match between system and the real world,”
and “Consistency and standards.” The severity of the design issues factored into
the prioritization of the fixes.

In addition to uncovering design issues that degrade the learnability and
usability of FCA, this design thinking process reinforced the need for FCA to
help KWs balance positive and negative impacts of productivity with their well-
being. This finding underpins the primary goal of FCA to promote healthy flow
performance and work-life balance.

7 Conclusion

This paper discussed the design thinking of a human-centered AI system that
seeks to enhance the flow performance and well-being of individual KWs. We
effectively applied the d.school design thinking process model to iteratively in-
tegrate lessons learned across the entire AI design and development life cycle.

The design thinking process reinforced that system design should start with
the correct user to find the right problem. The application of design thinking to
the human-AI experience of FCA involved a high level of sensemaking to decide
which questions about the KW required clarity [55]. We leveraged samples of
KWs and Amazon MTurk’s pool of KWs to generate sufficient qualitative and
quantitative data to ensure that FCA was developed to fit their needs.

Each prototyping cycle solved specific problems. Prototype 1 visualized out-
puts from the predictive model as time series and heatmaps. Prototype 2 tested
the feasibility of classifying multimodal bio-signals and confirmed the decision to
pursue a neurofeedback-based solution. Prototype 3 extended the neurofeedback
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approach and determined the efficacy of the computed EEG indices. Prototype
4 evaluated FCA in cognitive walkthroughs and heuristic evaluations.

In the context of FCA, an organization may mandate that individual KWs
use FCA. The organization may wish to fire specific KWs if they do not achieve
a high flow state for more than five hours a day. FCA proposes to protect against
this type of misuse and abuse by treating bio-signal data as personal health in-
formation, defined as protected information under the Health Insurance Porta-
bility and Accountability Act (HIPAA). FCA digitalizes and scales the role of
a personal workplace coach who helps KWs work healthier, happier, and more
productively of their own volition.

The most challenging aspect of this research plan was developing a multi-
modal Prototype 2. This prototype required the simultaneous classification of
multiple bio-signals to provide reliable indicators of the KW state. The proto-
type was too slow to reach a consensus due to various bio-signals with different
timescales and inexplicable classifications. Another significant challenge was the
downtime to train, test, and tune the AI models that punctuated the rapid
exploratory iterations of the prototypes.

Future research includes experiments to streamline protocols, collect self-
reports, and compute EEG indices. Other UI-focused advancements will center
on a wider variety of flow-inducing conditions. We will continue to collect data
from KWs performing measurable knowledge work tasks in randomized con-
trolled trials and longitudinal playtests. These data will help to improve the
human-AI experience of FCA for the benefit of KWs.

References

1. Abuhamdeh, S.: Investigating the “flow” experience: Key conceptual and opera-
tional issues. Frontiers in Psychology (2020)

2. Alves, N.T., Fukusima, S.S., Aznar-Casanova, J.A.: Models of brain asymmetry in
emotional processing. Psychology & Neuroscience 1, 63–66 (2008)

3. Amankwah-Amoah, J., Khan, Z., Wood, G., Knight, G.: Covid-19 and digitaliza-
tion: The great acceleration. Journal of Business Research 136, 602–611 (2021)

4. Barwick, F., Arnett, P., Slobounov, S.: Eeg correlates of fatigue during admin-
istration of a neuropsychological test battery. Clinical Neurophysiology 123(2),
278–284 (2012)

5. Berka, C., Levendowski, D.J., Lumicao, M.N., Yau, A., Davis, G., Zivkovic, V.T.,
Olmstead, R.E., Tremoulet, P.D., Craven, P.L.: Eeg correlates of task engagement
and mental workload in vigilance, learning, and memory tasks. Aviation, space,
and environmental medicine 78(5), B231–B244 (2007)

6. Boksem, M.A., Meijman, T.F., Lorist, M.M.: Effects of mental fatigue on attention:
an erp study. Cognitive brain research 25(1), 107–116 (2005)

7. Bostrom, N., Sandberg, A.: Cognitive enhancement: methods, ethics, regulatory
challenges. Science and engineering ethics 15(3), 311–341 (2009)

8. Cheng, S.Y., Hsu, H.T.: Mental fatigue measurement using EEG. IntechOpen
(2011)

9. Colzato, L.S., Hommel, B., Beste, C.: The downsides of cognitive enhancement.
The Neuroscientist 27(4), 322–330 (2021)



Design Thinking the Human-AI Experience of Neurotechnology 17

10. Csikszentmihalyi, M.: Flow: The psychology of optimal performance.(1990) (1990)

11. Csikszentmihalyi, M.: Happiness and creativity. The Futurist 31(5), S8 (1997)

12. Csikszentmihalyi, M.: Play and intrinsic rewards. In: Flow and the foundations of
positive psychology, pp. 135–153. Springer (2014)

13. Csikszentmihalyi, M.: Toward a psychology of optimal experience. In: Flow and
The Foundations of Positive Psychology, pp. 209–226. Springer (2014)

14. Dasari, D., Shou, G., Ding, L.: Ica-derived eeg correlates to mental fatigue, ef-
fort, and workload in a realistically simulated air traffic control task. Frontiers in
neuroscience 11, 297 (2017)

15. De Gennaro, L., Marzano, C., Veniero, D., Moroni, F., Fratello, F., Curcio, G.,
Ferrara, M., Ferlazzo, F., Novelli, L., Pellicciari, M.C., et al.: Neurophysiological
correlates of sleepiness: a combined tms and eeg study. Neuroimage 36(4), 1277–
1287 (2007)

16. DeLosAngeles, D., Williams, G., Burston, J., Fitzgibbon, S.P., Lewis, T.W., Grum-
mett, T.S., Clark, C.R., Pope, K.J., Willoughby, J.O.: Electroencephalographic cor-
relates of states of concentrative meditation. International Journal of Psychophys-
iology 110, 27–39 (2016)

17. Demos, J.N.: Getting Started with EEG Neurofeedback. Norton & Company (2019)

18. Dittner, A.J., Wessely, S.C., Brown, R.G.: The assessment of fatigue: a practical
guide for clinicians and researchers. Journal of psychosomatic research 56(2), 157–
170 (2004)
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