4852

IEEE SYSTEMS JOURNAL, VOL. 15, NO. 4, DECEMBER 2021

Assurance for Integrating Advanced Algorithms in
Autonomous Safety-Critical Systems

Milton Stafford, Siddhartha Bhattacharyya
, and Thomas C. Eskridge

Natasha Neogi

Abstract—Although advanced algorithms are needed to enable
increasingly autonomous civil aviation applications, there are limi-
tations in assurance technologies, which must be addressed to gain
trust in the performance of these algorithms. This gap emphasizes
the need to guarantee safety by capturing performance boundaries,
as these algorithms are integrated. Additionally, multiple similar
algorithms might need to be executed sequentially or concurrently
to accomplish a mission or provide guidance for safety-critical oper-
ations. The selection among algorithm functionalities is a complex
and critical activity that needs to be systematically designed and
analyzed before actual implementation. Toward this end, we discuss
our proposed process, which includes formally modeling abstrac-
tions of the algorithms in an architectural framework, then iden-
tifying the key performance parameters, followed by verification
of the composition of these algorithms with formal contracts based
on assumptions and guarantees. Finally, to reduce the gap between
design and implementation, an automated translation from the
architectural model to source code has been developed, which is
a Java-based outline of the implementation. We demonstrate our
compositional approach in assuring the behavior of an autonomous
aerial system via a collision avoidance case study with advanced
algorithms to handle critical emerging situations.

Index Terms—Architecture design analysis, automated

reasoning, autonomous system design, formal methods.

I. INTRODUCTION

ITH the advent of machine learning and adaptive control

(AC), there have been significant advancements in the
field of intelligent systems. Many disciplines have seen the
widespread adoption of advanced techniques, such as artificial
intelligence (Al) and AC. These advanced technologies have
enabled execution of highly complex tasks previously done by
humans in diverse areas of application or solving previously

Manuscript received April 23, 2020; revised August 10, 2020; accepted
September 5, 2020. Date of publication October 5, 2020; date of current
version December 9, 2021. This work was supported by the Harris Institute of
Assured Information, Florida Institute of Technology. (Corresponding author:
Siddhartha Bhattacharyya.)

Milton Stafford was with the Department of Computer Science, Florida
Institute of Technology, Melbourne, FL 32901 USA. He is now with
Maxar Technologies, Westminster, CO 80234 USA (e-mail: mstafford2012@
my.fit.edu).

Siddhartha Bhattacharyya and Thomas C. Eskridge are with the Department
of Computer Science, Florida Institute of Technology, Melbourne, FL 32901
USA (e-mail: sbhattacharyya@fit.edu; teskridge @fit.edu).

Matthew Clark is with Galois Inc., Dayton, OH 45402 USA (e-mail:
mattclark @ galois.com).

Natasha Neogi is with NASA Langley Research Center, Hampton, VA 23666
USA (e-mail: natasha.a.neogi @nasa.gov).

Digital Object Identifier 10.1109/JSYST.2020.3023286

, Member, IEEE, Matthew Clark ",

unsolvable problems. The integration of advanced technologies
has led to the increasingly autonomous systems (ASs) of today.
These systems are detailed in several research efforts investigat-
ing AC [1]-[3] and Al-based methods [4]-[7]. For example, the
automatic supervisory AC method enables the AS to fly with a
damaged wing [2]. The automatic ground collision avoidance
system (AutoGCAS) for fighter aircraft automatically prevents
ground collision [8]. Path planners, such as Stratway [9] and
Advanced ReRouter [10], deploy approaches to prevent airborne
collision along with identifying a path from the origin to des-
tination. The aforementioned algorithms are only a sampling
and emphasize the need to integrate these complex methods in
an assured fashion, so they can be deployed in commercial and
military applications. The need for assurance means and meth-
ods is further emphasized in [11], which deals with certification
considerations for adaptive systems.

The integration of advanced technologies within an AS en-
ables the AS to intelligently avoid hazardous situations or to deal
with emerging situations autonomously. Therefore, it is highly
beneficial to deploy these capabilities for safety- and mission-
critical operations. However, these technologies are not yet im-
plemented for autonomous operations in safety-critical systems,
due to challenges in assuring the correctness of behavior. Upon
further inspection, a primary shortcoming in the high-assurance
software environment is the lack of techniques to demonstrate
consistency of complex automated systems. Consequently, there
is a significant demand for integrating advanced AI/AC systems
into safety-critical domains. In order to integrate complex al-
gorithms, a formal structured approach needs to be established
starting from the design phase so as to better understand the
performance boundaries.

Considering the scenario in which multiple advanced software
controllers are executing concurrently, the problem compounds.
The complex nature of the problem demands a rigorous approach
toward the design of a decision-making component (DMC). A
high level of confidence on the AS is required, as the success,
failure, and safety of the system depend on the DMC being able
to select one or more of the relevant services to deal with the haz-
ards of the emerging situation. In avionics, advanced software
controllers could include existing modules such as AutoGCAS
or hypothetical automated variants of a traffic alert and collision
avoidance system (TCAS) and a geo-fence avoidance system.
The problems stem from the possibility of multiple concurrent
events or failures, requiring intervention from multiple con-
trollers. This leads to the challenge of abstraction in representing

1937-9234 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Florida Institute of Technology. Downloaded on December 20,2022 at 07:14:39 UTC from |IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0001-7296-7999
https://orcid.org/0000-0003-4396-9041
https://orcid.org/0000-0002-3257-6288
https://orcid.org/0000-0002-2117-5294
mailto:mstafford2012@penalty -@M my.fit.edu
mailto:sbhattacharyya@fit.edu
mailto:teskridge@fit.edu
mailto:mattclark@galois.com
mailto:natasha.a.neogi@nasa.gov

STAFFORD et al.: ASSURANCE FOR INTEGRATING ADVANCED ALGORITHMS IN AUTONOMOUS SAFETY-CRITICAL SYSTEMS

Safety
Controller/
Service
Controller/

Decision Service

Context

Making Selected
Component
Complex
Controller/
Service

Fig. 1. Simplex architecture.

the complex algorithms and the DMC, so that we can formally
verify each component and the composition. Finally, once the
design is verified, the next problem to address is reducing the
assurance gap between the design and its implementation. To
address this concern, we developed an automated approach to
translate the architecture and the formally analyzable annota-
tions within the architecture to an outline of the Java-based
software code. This becomes the outline for software engineers
to follow and embeds the algorithmic behavior in Java. This arti-
cle discusses a systematic approach to integrate advanced algo-
rithms, through architecture analysis, by incorporating existing
and novel methods for automated analysis. The process is elabo-
rated by implementing the methods within a tool. The end result
is the description of a process to integrate advanced algorithms.

The challenges in designing the models describing the ab-
stract representation of the complex algorithms are set out in
Section III. We discuss the design of the DMC and assess
its responsibilities in Section IV. Finally, an algorithmic ap-
proach translating the architecture into software code is de-
tailed in Section V. We then describe an autonomous aerial
system case study, with an Architecture Analysis and Design
Language (AADL)-based architectural representation and an
assume—guarantee-based modeling of the abstracted behavior,
in Section VL.

II. BACKGROUND

This section on related work discusses simplex architectures.
We focused on the simplex architecture as it provides us with
the essential components that are needed in order to integrate
the complex or untrusted algorithms required for AS to handle
emerging situations. In the simplex architecture, shown in Fig. 1,
one of the essential components is the DMC. Therefore, one of
the major focuses of this article is in designing the DMC by
architecturally analyzing and understanding the behavior of the
complex algorithms. The analysis of the complex algorithms
provides us with the specifications that need to be satisfied by
the DMC. Additionally, we investigate if the actions from the
complex algorithms can be selected sequentially or concurrently.
Toward this end, we discuss the AADL, which is the architectural
framework that we have used in designing the models. This is
followed by a discussion of the Assume—Guarantee REasoning
Environment (AGREE) that enables compositional analysis of
the designed solution.

A. Simplex Architecture for Complex Algorithm Selection

Complex or uncertified controllers/services can be integrated
within ASs for decision making by using a simplex architecture

4853

approach [12]. According to a simplex architecture [12], [13],
the real-world situation observed with sensors is fed into the
DMC, complex controller(s), and safety controller(s). The con-
trollers compute their solution, and the DMC selects one based
on the understanding of which controller performs the best in
that context. Therefore, the design of the DMC is very critical
as it selects the controller to take the next possible action.

The simplex mindset introduces the idea of concurrency, that
is, a “high-assurance kernel” executing in tandem with the “high-
performance subsystem” [14]. The emphasis of this article is in
analyzing the performance of complex algorithms, at a higher
level of abstraction, to understand the performance boundaries.
This is guided by the motivation to prevent ASs failures such
as the Tesla accident, where the performance boundary of the
vision system was not well understood [15].

In [12], Phan et al. combined a simplex architecture with
assume—guarantee-based reasoning to assure runtime behavior.
However, Phan et al. [12] did not investigate handling multiple
emerging situations, which is performed in this article. Wang
et al. discuss the RSimplex [16] architecture, which integrates
robust fault-tolerant control techniques into the simplex archi-
tecture, but it does not determine the performance boundaries to
identify when the guarantees fail for a system.

B. Architecture Modeling With AADL

In the modeling environment, system developers create high-
level models of the system architecture using the System Mod-
eling Language [17], which is standardized by the Object Man-
agement Group. Another similar modeling paradigm is the
AADL [18], which is supported by the SAE AS2-C working
group.

AADL is a component-oriented modeling framework. A
model is a set of interconnected component instances. A com-
ponent instance is a unique representation of a component type
that defines its interface (e.g., parameters, ports, requirement to
access to other elements, etc.) and the corresponding component
implementation that refines its internals. This implementation
allows for a diverse set of system characteristics to be modeled as
AADL annexes depending upon the automated analysis of inter-
est such as scheduling, model checking, behavior as finite-state
machines, and compositional reasoning. AADL has been defined
so that a system/software engineer can use the vocabulary and
concepts of his/her domain. AADL allows for integrating and
reasoning over the composition of the architecture.

C. Modeling Behavior With AADL Annex: AGREE

The AGREE annex is an extension to AADL that allows the
behavior of a component to be specified as assume—guarantee
contracts. In AGREE, the assumptions specify the assumed
inputs with its ranges and the corresponding outputs with its
guarantees. AGREE analysis follows system engineering prin-
ciples such as architectural reasoning to perform compositional
verification. A component-level guarantee is met by guarantees
provided by the subcomponents of that component. Tool sup-
port for AADL and AGREE is provided by the Open Source
AADL Tool Environment (OSATE) [19]. The OSATE provides

Authorized licensed use limited to: Florida Institute of Technology. Downloaded on December 20,2022 at 07:14:39 UTC from |IEEE Xplore. Restrictions apply.



4854

Start

|

1. Identify top-level
requirements Bl

5. Verify All Individual
Components

1 |

2. Decompose and
Assign Requirements

6. Combine Component
Models

! l

3. Create top-level
Assumptions and
Guarantees (AGs)

7. Verify System model

1

4. Perform Component | |
Modeling

8. Generate
Implementation Stub

1

9. Finish Prototype
Implementation

!

End

Fig. 2.
routine.

graphical and textual editors for AADL and supports a number
of analysis tools.

In [20], researchers modeled the behavior of avionics as a
behavior annex that was then translated into Uppaal [21] to
perform model checking. Cofer et al. [22] developed models
in AADL/AGREE to provide verifiable security, that is, system
designs that provide the highest levels of confidence in their
security based upon verifiable evidence. Our major contribu-
tion is in the design of the framework to integrate advanced
algorithms. In the integration process, we demonstrate how an
architectural assume—guarantee-based approach can be used to
represent complex algorithms and to identify satisfaction of
requirements in the design phase. As a result, we developed an
algorithmic approach to generate key performance parameters
(KPPs), implemented a method to identify the existence of
concurrent solutions to emerging problems, and then generated
the execution schedule based on the emerging situation. In
implementing this framework, our article also elaborated on
the design and verification of a DMC for integrating complex
algorithms. Finally, we developed an AADL to Java translator
that demonstrated how we can automate the process of mapping
the design to source code generation with constraints modeled
in the architecture.

III. METHODOLOGY FOR INTEGRATING
ADVANCED ALGORITHMS

One of the essential elements in safely integrating advanced
algorithms for ASs is to develop a systematic approach that

IEEE SYSTEMS JOURNAL, VOL. 15, NO. 4, DECEMBER 2021

®

Component Modeling

A-1. Select component
requirements that can be
modeled

A-2. |dentify Logical
Behavior

l }

A-3. Identify scientific
model that estimates
measurement

A-5. Create AGs from
requirements

! |

A-4. Generate AGREE
node to provide
estimates in system
model (linearization)

A-6. Create component
models in AADL/AGREE

|

B-3. Eliminate
failure potential

B-1. AGREE:
Verify All Layers

B-2. Analyze
countexample

Yes

Proposed framework methodology. The steps on the left form the main routine. Both enclosed blocks on the right are subroutines referenced by the main

emphasizes automated architectural analysis early in the design
phase. The early automated analysis objective helps capture
concrete requirements and perform automated checks to detect
conflicts in the requirements or identify the uncertainties. Our
methodology elaborates upon such an architectural approach.

Fig. 2 illustrates the entire methodology. The steps are given as
one main routine (on the left) and two subroutines (on the right)
referenced by the main routine. The remainder of this section
discusses all the key elements of the proposed methodology,
which involves identifying preconditions, decomposition, com-
ponent modeling, verification, composition, and implementation
and then elaborates on those steps.

A. Preconditions

The preconditions that need to be satisfied in order to apply
our method requires knowledge of certain predefined objectives,
predefined failures, and a model checking environment. Thus,
there must exist an initial notion of desired behavior such that
top-level requirements can be identified (Step 1 in Fig. 2). For
example, a top-level system requirement for a TCAS may be for
the rightmost of the two aircraft in conflict to ascend, while
the other aircraft descends, in order to resolve the conflict.
In other words, the highest level module must have a well-
defined objective that also serves as a nonsubjective measure
for failure. Along with the objective, one needs to identify
an architectural modeling environment that allows automated
reasoning to identify conflicts among requirements or guarantee
performance.

Authorized licensed use limited to: Florida Institute of Technology. Downloaded on December 20,2022 at 07:14:39 UTC from |IEEE Xplore. Restrictions apply.



STAFFORD et al.: ASSURANCE FOR INTEGRATING ADVANCED ALGORITHMS IN AUTONOMOUS SAFETY-CRITICAL SYSTEMS

System N+ System NAn-hH,w — System N,

System N
Input Output
— Component A Component B +—
Component A . Component B .
System N, . ., = Component A, .+ Component B,

Fig. 3. Compositional reasoning.

B. Decomposition

The top-level requirements identified so far must be broken
down into lower level requirements and assigned to components
(Step 2 in Fig. 2). In other words, a sensible separation of respon-
sibility is undertaken. The decomposition is an example of the
time-honored tradition of breaking problems into subproblems.

In the process of decomposition, it is critical to identify
the top-level or system-level requirements as assumptions and
guarantees for the whole system (see Fig. 3). This top-level
goal is paramount to the correct operation, so all submod-
ules/subsystems should adhere to the assumptions of the sys-
tem, which should lead to the satisfaction of the system-level
guarantees. These system-level requirements are modeled in the
AGREE language. For example, a system-level guarantee may
be on the overall time taken by the system to execute a sequence
of complex algorithms to address an emerging situation; this is
further discussed in Section VI.

C. Component Modeling

Step 4 in Fig. 2 indicates that the component modeling
subroutine is executed on each individual component, that is,
the execution of steps A-1-A-6. The first step in modeling a
particular software module is identifying local objectives and
requirements. The three aspects of a component are the logical
behavior (A-2), the scientific model estimation of the continuous
dynamics (A-3), and the objective requirements. Identifying
these aspects help us write the assumptions and guarantees in
AADL/AGREE (A-5).

The logical behavior of a software module is the set of rules
that model discrete behavior for actions within a module. For
example, consider a software module that is responsible for an
aircraft’s altitude that picks 7000 ft if heading Eastward and
8000 ft otherwise. To model this behavior (A-2), you must
introduce an input parameter, e.g., “heading,” and model the
altitude decision based on that parameter using an AGREE
statement, such as the following:

Listing 1: AGREE example of modeling logical behavior.

assign altitude = if(heading < 180)
7,000

else

8,000;

The scientific model estimation (A-3) projects the value
of a parameter based on the given equation that models the
continuous dynamics. The estimation process also uses a time

4855

parameter, which monotonically increases with each step of
execution. For example, a module that tracks distance may do so
based on an assumption of a fixed rate of increase in one direction
over time. As the time parameter increases during execution, the
distance variable is calculated as a function of rate and time.
The calculation is treated as an estimation since it does not
necessarily account for all factors. As one of the contributions
of this article, a tool has been created to perform linearization
for AGREE representations, which can be referenced from com-
ponent models (A-4). Such an AGREE expression is shown as
follows:

Listing 2: AGREE example of modeling scientific model estimation.

eq t: real = 0.0 — pre(t) + 1.0;

assign distanceEstimate = getDistance(t,
rate );

where “getDistance” is an AGREE function generated by trans-
lating the equation d = rate * ¢.

1) Linear Approximation: A module relies on measurements
it receives from the environment to calculate KPPs, via the
input/output (I/O) module. To calculate the system trajectory
and predict the future state, modules must apply scientific the-
orems and perform potentially complex calculations. However,
AADL/AGREE does not support complex mathematics; thus,
there is the need for linearized equations for approximation.

The linearization y, of a function y involves building a piece-
wise function, where each branch is of the form mx + b, and
that the difference between the original and linearized function
is minimized. For example, the function

y = 2022 — 150z + 500

becomes
—102x +471.2, <24
—6x + 240.8, 24 <x <48
yr = { 90x — 220, 48 <x <72
186z — 911.2, 72<x<96
282xr — 1,832, x> 9.6.

Algorithm 1 shows the steps to create a piecewise approx-
imation of any function on a certain range if the function is
differentiable and separable on that range. This is the classical
bounded variable piecewise linearization algorithm, as seen
in [23], and is implemented as a Python program.

Once the above aspects are modeled, the next step in com-
ponent modeling is to create the AGREE assumptions and
guarantees (A-5). The assumptions and guarantees use variables
defined in the component model to represent the objective. The
following example uses variables defined by the above snippets:

Listing 3: AGREE example of an assumption and a guarantee.

assume ~Heading is within bounds”:
heading >= 0 and heading < 360;

guarantee ~Altitude is kept above 500 ft”:
altitude > 500 ;

Authorized licensed use limited to: Florida Institute of Technology. Downloaded on December 20,2022 at 07:14:39 UTC from |IEEE Xplore. Restrictions apply.



4856

Algorithm 1: Generate Piecewise Approximation Function
G = {gr(z)|r € Ry}, Where R}, is the Subrange and gy, ()

is the Linear Function for the Given Range R = [Z40p, Tsiart]
with C as Total the Number of Cases and k Being an Integer
from 1 to C.

Input: f(z),R,C ;
Output: G = {Ry, — gr(2)};
0 ((xsta’r‘t - xstop)/c);
for i = 0 until C do
X <_xstart+i*5 5
Tmidpoint < Tstart + i%0 + 5/2 >
gk (33) = f/(xmidpoint) * T+ f(xmidpoint);
Gr < (i, ziv1] = g);
return G

@ NN T R W N -

b=

The objective can also be the identification of satisfactory
values of the KPP. KPPs can be identified from the equations rep-
resenting the kinematics or the logical behaviors. For example, in
our case, we identified the KPP to be time to recovery. The value
for the KPP was then represented within a guarantee statement
for the component or whole system under consideration. Then,
we performed assume—guarantee-based automated reasoning on
the behavior (kinematics or logical behavior) of the component
to evaluate whether a particular value for recovery time was sat-
isfied. In order to compute the KPP under discussion, kinematic
equations implemented within the component were evaluated.
The evaluation was performed based on values of continuous
parameters such as velocity, acceleration, and altitude. The value
in the guarantee was then checked to see if it matched the
computed value from the equation. The computed value was
evaluated in an iterative process, by changing the value of the
recovery time within the guarantee statement until the guarantee
was satisfied, i.e., the value for the KPP matched what was
computed from the equation.

Once the AGs are written, each submodule will have two
associated AADL objects: a component type and a component
implementation (A-6).

D. Verification

In this assume—guarantee-based approach, we verify a com-
ponent (step 5) or a full system (step 7) by similar means.
In either case, verification entails launching a model checker
(step B-1). A model checker generates all the possible ex-
ecution traces for the model under verification, to check if
the property is satisfied or not. The result of model check-
ing is either a “pass” or a “fail” with given counterexamples.
A counterexample is one such trace generated by the model
checker that disproves the property. Analyzing counterexamples
(B-2) is required to identify the reason for failure and aids in
changing the design to create a model that passes verification.
Verification failures are due to different types of inconsisten-
cies in the model. Since the model checker is applying formal
verification, false positives are very uncommon (false posi-
tive meaning erroneous successful verification); however, false

IEEE SYSTEMS JOURNAL, VOL. 15, NO. 4, DECEMBER 2021

negatives are common. Removing true-negative inconsistencies
also removes failure potentials from the design and, subse-
quently, the implementation.

In removing inconsistencies (B-3), we must constrain the
model checker, so that it does not provide nonrealistic coun-
terexamples. Two common false negatives arise from too loose
assumptions and too strict guarantees, neither of which reflect
reality. In the case of too loose assumptions, the model checker
finds a counterexample that is an impossible situation, e.g.,
altitudes below ground level; we can assume that airplanes
are flying above ground. In the case of too strict guarantees,
we ask too much from the system, e.g., escaping harms way
instantaneously, which is not possible.

1) Formal Compositional Verification: Once the system re-
quirements are represented in an architectural framework,
assume—guarantee-based structural reasoning can be applied to
first verify the behavior of each of the components and then
that of the composition of the overall system. We illustrate the
described approach in our implementation in AADL/AGREE.
In our approach, each of the systems is represented as shown in
Fig. 3.

A system (SystemN) is defined by specifying the assump-
tions for its inputs (data or environmental), (SystemN 4), such
as the normal operating ranges, velocity, and acceleration. In our
case study, the velocity was assumed to be 50 ft/s and acceler-
ation 100 ft/s2. The expected guarantees for the outputs of the
system are represented by (SystemN¢), such as time to recov-
ery from three emerging situations occurring sequentially. The
guarantee is a verification query, which initiates the execution of
compositional reasoning to discover the performance boundary.
For example, in our case study, the query states: “Is it possible
that the time to recovery for the overall system is within 15
seconds?” The assumptions and guarantees of the components
embedded within the system (SystemN ,.ci(4,c)) are explored
to check if the guarantees of the overall systems can be satisfied.
In our example, the guarantees from each of the components for
time to recovery are identified to be 3.7 s for AutoGCAS, 9.1 s for
automated traffic collision avoidance system (AutoTCAS), and
1.7 s for automated geo-fence controller (AutoGFC) for the as-
sumed velocity and acceleration. Therefore, the guarantees from
each of the subsystems are composed together, to evaluate if the
system-level guarantee (SystemN¢) is met. For our example,
the total time to recovery for the composition of components is
computed to be 3.7+9.1+1.7=14.5. The computed total time to
recovery is less than 15 s, so the system-level guarantee is met.
As part of the approach, we need to identify inputs, outputs,
the internal architecture, and the assumptions and guarantees
associated with each of the systems and its components. Once
we have a representation for the whole system, we will be
able to verify the correctness of the behavior by performing
compositional reasoning.

E. Implementation

Once the whole system is verified, the next step is to automat-
ically generate source code. The method of automatic source
code generation (Step 8) is executed as shown in Section V.

Authorized licensed use limited to: Florida Institute of Technology. Downloaded on December 20,2022 at 07:14:39 UTC from |IEEE Xplore. Restrictions apply.



STAFFORD et al.: ASSURANCE FOR INTEGRATING ADVANCED ALGORITHMS IN AUTONOMOUS SAFETY-CRITICAL SYSTEMS

The source code produced is intended to be a software
“skeleton,” meaning it is not yet a complete program with the
desired behavior. Rather, each assertion becomes a piece of the
structure, which automatically performs I/O checking based on
the assumptions and guarantees modeled in an architectural
framework such as AGs in the AADL/AGREE model. The
source code has explicit places, in fact, where further imple-
mentations are required. Details that are not considered during
model checking are now needed for machine instruction (step 9).
The implementations for each module are imported or developed
at this point. The output is a program with code specifying an
application programming interface (API) and performing 1/O
validation, which is generated by the models, alongside the
implementation desired to be integrated into the safety-critical
system.

IV. DMC DESIGN

The DMC is the core of the decision-making architecture. It
selects the correct controller based on state and environmental
conditions To this end, the DMC performs four functions: check-
ing that a solution exists, building static maneuver schedules,
relaying active maneuvers to the I/O module, and managing the
active module. Real-time maneuver scheduling is done via the
parameters that accompany the maneuvers received by the DMC,
which help determine the time window in which the maneuver
must take place. When a maneuver reaches the current moment
in time, the DMC forwards the control from a module to the
I/0O module, which then forwards the control on to the desired
output devices.

A. Maneuver Scheduling

The DMC generates a schedule of maneuvers depending
upon the emerging scenario. Maneuvers not yet initiated can be
rescheduled by the DMC to improve performance or deal with
safety concerns. We assume nonpremptive scheduling so that no
maneuver is stopped or updated once it is initiated. The steps to
update the schedule are given by Algorithm 2. Algorithm 2 is a
traditional implementation of an earliest deadline first schedul-
ing algorithm without preemption and is described in [23]. It
ensures that maneuvers are scheduled without overlap in order
of closest time to failure. This serves as the most general-purpose
strategy, that is, it may not always produce the best schedule in
every situation.

B. Concurrency Analysis

One beneficial improvement to the scheduling is to allow
for concurrent maneuvers if possible. There are at least two
considerations in allowing concurrency: maneuver compatibility
and resource limitations. Performing maneuvers concurrently
increases the possible application space to complex systems,
whose behavior includes a diverse set of behavior periods rang-
ing from very short to very long, and systems with overlapping
maneuvers. It also increases the possible performance of the
decision-making architecture.

4857

Algorithm 2: Create or Update Asynchronous Sched-
ule S, = {v0,71,.--Vi} t0 Sp+1 Where Event v =
(m; tstart)’ Maneuver m = (C, trecovera tfailure)s and
Controls C' = {¢y, ¢y, ..., ¢; } Rescheduled Given Maneu-
VEr Mayeqw at Time teyprent-

1 Inplltl Sru Mpew, ﬁcurrent;

2 Output: S, 11;

3 Mupcoming — {}’

4 for ~in S, do

5 if Tstart(’Y) > teurrent then

6 L Mupcoming — Mupcoming U M(V);
7 Spp1 1)

o®

tnezt_free — tcurrent;

while | M,pcoming| > 1 do

o

10 Mpext < argmin{m S Mupcoming};
tfailure

1 Mupcoming — Mupcoming — Mpext;

12 Sn—i—l — Sn+1 U (mnext7 tnezt_free);

13 tneact_free — tneact_fv'ee + Trecover (mne:ct);

14 return S, ;1

In the world of general-purpose computing, parallel pro-
cessing is a heavily researched and well-understood topic. Im-
plementing a job queue distributes computational load across
multiple processes so that programs can scale according to
available resources. In this framework, the maneuvers can func-
tion as jobs in a queue, assigned by the DMC to output de-
vices (workers). Thus, we can apply theorems from distributed
computing.

By design, the DMC determines the “concurrency factor”
for a given schedule. The “concurrency factor” indicates the
maximum number of maneuvers done concurrently at a single
moment, if the amount of concurrency is minimized. In other
words, it corresponds to the minimum number of workers needed
to perform a number of jobs within a certain amount of time.
Determining the concurrency factor allows the DMC to make
guarantees about concurrency or lack thereof during the verifi-
cation stage.

C. Generating Schedule Validator

When multiple emerging situations occur, the DMC needs
to exhibit the behavior of a schedule validator. To calculate
the concurrency factor, a different function is needed for all
possible maneuvers. Presumably, this would require manually
writing the needed code for every needed function. This article
contributes an automated process for generating the needed
functions for determining the concurrency factor. The process
generates a concurrency factor evaluation that is implemented
in the AADL/AGREE framework, to show the feasibility of the
approach. Listing 4 shows a generated AGREE function for three
maneuvers.

Authorized licensed use limited to: Florida Institute of Technology. Downloaded on December 20,2022 at 07:14:39 UTC from |IEEE Xplore. Restrictions apply.



4858

Listing 4: This AGREE node was generated.

node concurrencyFactor (tO:
t2: real,

returns (can_use_1: bool,
can_use_3:

real ,
real)
bool ,

real , tl:
totalTime :
can_use_2:
bool);
let

can_use_1 = ((t0 + t1 + t2)

< totalTime);

can_use_2 = ((t0) < totalTime

and (tl + t2) < totalTime)

or ((t0O + tl) < totalTime and (t2)

< totalTime)

or ((tl) < totalTime and (t0 + t2)

< totalTime );

can_use_3 = ((t0) < totalTime

and (tl) < totalTime

and (t2) < totalTime);

tel ;

The generated function returns n Boolean flags that corre-
spond to the truth of the generic statement: “can the given
maneuvers be performed with concurrency factor n.”

To calculate the concurrency factor, the generated function
checks all distinct arrangements of the given maneuvers to
determine which arrangements satisfy the time constraint. In
other terms, valid(S(M,n,t)) = (A1 V Ay V -+ -V Ayp), where
S is a schedule of M maneuvers, and A is a valid arrangement
of the maneuver set M, where the last maneuver finishes before
time ¢. An arrangement is successful if the sum of time-to-
recovery values for each worker is less than the total time. Fur-
thermore, valid(A(M, n,t)) = (sum(Wp) < t) A (sum(W7) <
t) A -+ A (sum(W;) < t), where W indicates the list of maneu-
vers performed by worker 7.

Algorithm 3 gives the whole process of calculating the
concurrency factor. The underlying function allPartitiong()
gives all distinct groupings of a list of objects. For
example

all Partitionings([A, B,C]) =

14, B, C]), [[4], [B, 1),
(14, B, [C]],
(141, (B], [C]].

The result is a list of four partitions of the given three ele-
ments. The ordering of the list must be preserved when initially
partitioning, but the execution order of a partition (and elements
within a partition) can be ignored. Therefore, the collection
[A, B] is equivalent to [B, A] and [A], [B, C] is equivalent to
[C, B], [A]. Applying this to the jobs and workers scenario, the
first partitioning uses one worker, the second two use two work-
ers, and the last partitioning uses three workers. This function
gives the complete list of valid and distinct partitionings for
determining the concurrency factor (analogous to the minimum
number of workers required).

IEEE SYSTEMS JOURNAL, VOL. 15, NO. 4, DECEMBER 2021

Algorithm 3: AGREE Concurrency Factor Node given
the Maneuver Set M, the Number of Maneuvers to
Schedule n, and ¢ the Amount of Time.

1 Input: M, n, t ;

2 Output: C' ;

3C+{};

4 for partitioning € all Partitioning(M) do

5 numO fGroups + len(partitioning);
6 if numO fGroups < n then

7 for group € partitioning do

8 if sum(group) <t then

9 L L ClnumO fGroups] < true ;
10 return C

V. CODE GENERATION

The process of creating a functional solution that fully adheres
to a verified design poses challenges. The difficulty is further
increased if there are several instances of behavior, which di-
verge from design, as it has the potential to create unforeseen
and unverified side effects that should absolutely be avoided in
safety-critical systems. The effort in verifying design is lost if
the implementation exhibits such divergent behavior. We present
a process for generating compliant implementations expressed
in a modern high-level programming language.

A. Translation Process

Producing a compliant implementation involves automati-
cally generating verification-enhancing code with an API for
further extension. In the following, we present a mapping of
AADL to Java, which is applied during code generation.

The code generation from AADL to Javais formally expressed
in Algorithm 4. It creates Java class representations of each
AADL module. Each Java class performs I/O verification that
exactly matches the assume/guarantee expressions in AGREE.
The resultant code uses object inheritance to express the design
abstractions as object abstractions, such that implementations
are easily added following code generation. The implementation
is bounded by the constraints defined in AADL as expressed in
Java after translation. Once the full implementations are written,
it can be added in conjunction with the generated code in the
system’s codebase for further development.

The process begins with the AADL packages, creating a set
of Java classes to capture these higher level groupings. Inside
each AADL package is a number of component types and
implementations, where the component types are captured by
Java classes. The implementation of the component behaviors
is ignored by the code generation process, since it is replaced
by manually written implementations later on by developers,
but the verified constraints form the bounding specifications for
the implementation and are generated. The generation process
also includes a small library of classes to perform basic actions
needed by all uses of this tool. The result is a set of Java classes,

Authorized licensed use limited to: Florida Institute of Technology. Downloaded on December 20,2022 at 07:14:39 UTC from |IEEE Xplore. Restrictions apply.



STAFFORD et al.: ASSURANCE FOR INTEGRATING ADVANCED ALGORITHMS IN AUTONOMOUS SAFETY-CRITICAL SYSTEMS

each expressing pieces of the corresponding AADL/AGREE
framework.

The translation process can be broken roughly into two types:
translating component behavior and translating AGREE nodes.
AGREE annexes for component models might invoke AGREE
nodes; thus, there is the need for translating AGREE nodes. An
AGREE node is similar to a library function in the standard
programming practice. AGREE nodes may have multiple return
values, requiring special return objects in Java. Therefore, each
AGREE node has an associated type class. AGREE nodes are
also combined by package into enclosing Java classes.

The main type of translation, translating component behavior,
involves matching AADL component type and AADL compo-
nent implementation definitions to create corresponding classes
for each pair that creates the validation layer. In this layer,
AGREE assumptions and guarantees are modeled as assert
statements in Java, which create Java runtime exceptions if
the required conditions are not met. Assumptions are asserted
on values before the implementation call is made; guarantees
are asserted after an implementation call is made. Asserts are
used as a direct semantic mapping, which does not follow ideal
coding principles, but allows preservation of constraint in the
automated mapping process. Ideally, we would throw exceptions
that provide explanation for the issue. The implementation call is
aone line call to the stub (i.e., empty but prepared for extension)
method. Each component pair has an associated abstract class,
which contains only this abstract method stub.

B. Code Generation Algorithm

The algorithm begins with each given AADL package (p)
and every component (a) in those packages, which lead to the
generation of Java code that will perform consistency checks
according to the model. Each package is assumed to have pairs
of components, which refer ultimately to the same software
product, one defining the type and one restricting the imple-
mentation. Those pairs are both considered when generating
a single representative Java class (c¢). The AGREE annex (R)
contains the necessary assumptions (A), guarantees (G), and
expressions (£). Assumptions are translated into input valida-
tion (Vi,), ensuring that the environment and given data sources
align with specified AGREE assumptions. Guarantees are trans-
lated into output validation (Vgy), ensuring that the complex
algorithm produces compliant data. After input validation and
before output validation, ., represents a method call to the
complex algorithm. That complex algorithm will use the given
inputs, accessible as class fields, and provide outputs, also as
class fields. Those class fields are checked against translated
assumptions and guarantees to ensure consistency during the
input and output validation steps, respectively.

The input to this algorithm (line 1) is primarily the AADL
packages P defining the architecture. A utility class library ¢y
is also required to support the translated product. For example,
the utility class implements the “pre” function from AGREE.
The output of this algorithm (line 3) is a set of Java classes C,
which fulfills the need for validation.

4859

Algorithm 4: Generate Java Class Objects from AADL
Objects, Each with AGREE Annexes.

1 Input: P: {p}, cy;

2 Where: p: ({n}, {(awype, Gimp) }):

3 Output: C : {c};

4 Where: ¢: (F, M),

s C+A{cvh

6 for each package p € P do

7 for each pair (atype, @impr) € p do
8

9

]U — Atype U Gimpl s

I, : (S, 9, R);
10 R:({AL{GHAEY
11 F T]<—vars (R» q))a
12 Temp — TJeemp(E);
13 va — TJeassert (A)7
14 Vout < TJ<—assert(G)§
15 U<+~ {}
16 for each port ¢y € © do
17 L Dout (aadjacent7¢in);
18 U — U U Tupdate(d)out = ¢in7 aadjacent);
19 mimpl < Mabstract * (aname);
20 Myalidation < M :

(‘/iﬂm Tex;m Ncall(mimpl)7 Vouta U)’

21 M {mi'mph mvalidation};
22 Cy < ¢ (Aname, I, M);
23 C <+ CUcy;
24 Myodes < {};
25 for each AGREE node n € p do
26 My, <= M 2 (Npame, Tyeeap(n));
27 Mnodes & Mpodes J M
28 C <+ C UType(n);
29 Cnodes < C: (pname> mnodes);

30 C+Cu Cnodess

31 return C

The outer for-loop (line 6) iterates through each given AADL
package p. AADL packages outline a scope and namespace for
components and AGREE nodes, with all constructs belonging
to exactly one package. The for-loop on line 7 examines each
AADL component pair: one component type aype and its asso-
ciated component implementation a;mpl. Lines 8—14 create the
pieces needed by the Java method to perform validation.

Lines 15-18 create update statements U to translate the
AADL port construct ¢. In AADL, a port allows sharing of
information between components. Therefore, in the Java pro-
gram, the functionality of a port to share information between
classes is performed via updates. That is, one class sets the value
of a member field of another class with statements after output
validation has succeeded. To generate the update statements,
we iterate through port connections to extract the necessary
parameters, e.g., source and destination.

Lines 19-23 assemble the class ¢, resulting from the pair
of AADL component objects. The class contains the necessary
member fields F for data accessibility, a method for validation
Myalidation, and an abstract method for API definition mapsiract-

Authorized licensed use limited to: Florida Institute of Technology. Downloaded on December 20,2022 at 07:14:39 UTC from |IEEE Xplore. Restrictions apply.



4860

Lines 24-28 translates each AGREE node n defined in the
current package. Each AADL package results in one Java class
Cnodes cOntaining the AGREE nodes M,oq4es that were contained
inside that AADL package. The AGREE nodes are represented
as methods m,,, which take as arguments the same arguments as
expressed in AGREE. They return, however, a composite object
since Java only supports a single return type. That composite
object is a plain Java type class containing only the member
fields that map to the return types of the AGREE node.

Lines 29 and 30 assemble the AGREE-node-based classes
with the AADL-component-based classes into one set of classes
in preparation for the next AADL package iteration or final
return.

This translation process supports the systems/software en-
gineering life cycle, by automating the translation of require-
ments/constraints modeled during the design phase to the source
code implemented during the construction phase. It enables early
analysis of requirements to identify any conflicts during the de-
sign phase and also emphasizes reducing requirement/constraint
mismatch between the source code and the architectural design.

VI. CASE STUDY: AUTONOMOUS AERIAL SYSTEM

Verification of real-time systems is needed in order to de-
velop autonomous aviation systems, which must be trusted and
resilient. For our case study, the system will invariably become
complex as it becomes resilient, since it must cope with mul-
tiple midair possibilities while remaining safe. There is a large
potential for damage in the form of property loss and injury
during an aviation system failure. This article emphasizes the
need to apply formal method-based assurance methodologies
during design time.

A. Selecting Autonomous Aviation Subsystems

In developing a case study, we use three existing aviation
subsystems that can benefit from our techniques. They represent
functionalities that usually were performed by humans or benefit
from human decision making to be resilient. We then apply our
verification process to a system composed of all three subsys-
tems to show that compositional verification is achievable in this
instance. First, we provide a description of the three autonomous
subsystems, which are under examination.

1) Traffic Collision Avoidance System: The TCAS [24] sub-
system attempts to keep a safe distance between all aircraft
equipped with this system. Nonautonomous TCAS recommends
safe altitudes to the pilot through a cockpit display. Often, the
pilot also communicates with the local air traffic controller to
receive and confirm altitude adjustments. Some effort is under-
way to make TCAS autonomous; in fact, Airbus has deployed
a partially autonomous TCAS (still using input from the pilot)
that simplifies the steps to maneuver safely [25].

2) Ground Collision Avoidance System (GCAS): The
GCAS’ [26] responsibility is to prevent collision with the
ground. Standard GCAS uses audiovisual cues to prompt and
warn the pilot if a ground collision is detected. AutoGCAS has
been deployed in military aircraft [27].

IEEE SYSTEMS JOURNAL, VOL. 15, NO. 4, DECEMBER 2021

assume "Maximum Descent Velocity is not less than -10.0":
maximumDescentVelocity >= -10.0;

assume "Aircraft starts above minAltitudeAllowed":
t = 0.0 => altitude > minAltitudeAllowed;

guarantee "Aircraft is climbing and above min altitude":
t >= gcasRecoveryTime => (altitudeAfterClimb > minAltitudeAllowed)
and (altitudeAfterClimb > pre(altitudeAfterClimb));

guarantee "Aircraft has not broken altitude constraint":
t < gcasFailureTime => (altitudeAfterDescent > failureAltitude);

guarantee "Report time-to-recovery": timeToRecovery = gcasRecoveryTime;
guarantee "Report time-to-failure": timeToFailure = gcasFailureTime;

assign altitudeAfterClimb = altitude ->
gcas_nodes.aircraftClimbAltitude(t);

assign altitudeAfterDescent = altitude ->
gcas_nodes .aircraftDescentAltitude(t);

Fig. 4. GCAS AADL/AGREE model snippets.

3) Geo-Fence Controller (GFC): A Geo-Fence [28] is a ge-
ometric three-dimensional boundary that an aircraft must not
cross. A Geo-Fence can be used to create volumes/zones of
prohibitive entry or, in an optimistic sense, an “operational area”
[28]. An AutoGFC, then, would prevent a vehicle from crossing
this boundary via changing course or a simple halt.

In this article, we focus on explaining the GCAS model and
its inner workings guided by assume—guarantee-based contracts.
Similar models have been developed for TCAS and GFC.

B. Examining the GC