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The availability of AI-powered products and services has increased and
become more accessible to people in their day-to-day lives. A significant
portion of these products and services have come in the form of AI assistants,
where the purpose of the AI system is to assist a human in a particular task
such as driving or decision support. This type of human-AI teaming is one
of the growing areas of research aiming at augmenting humans’ capabilities
and enhancing team performance; yet, the multifaceted nature of human-AI
interaction poses challenges to researchers and practitioners. In particular,
there are inconsistencies in the use of vocabularies to describe teamwork,
including cooperation, collaboration, and coordination (3Cs), making it dif-
ficult to transfer research findings from one study to another across the
literature. We propose a new approach to classifying teams based on input
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compositionality, enabling a more consistent use of the 3Cs. Our approach
highlights that compositional control collaborative teamwork where inputs
from team members are combined to produce one output, working inti-
mately as a team is a unique, interesting type of team setting. To better
understand this type of teamwork for human-AI teams, we conducted a
game experiment where participants were asked to maneuver a spacecraft
working in concert with an agent while simultaneously performing a sec-
ondary cognitive task. Experiment results underscore the importance of
providing information about a compositional control collaborative task to
humans working with a low capable agent. The results implied (albeit not
conclusively) that conveying in a timely manner the degree to which an
agent needs help from humans could improve team performance without a
significant increase in humans’ workload. The findings and lessons learned
from the experiment are expected to be transferable to other compositional
control collaborative teamwork settings, including AI-enabled automated
driving.

CCS Concepts: • Human-centered computing → HCI theory, concepts
and models; Empirical studies in HCI.
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1 INTRODUCTION
Recent advances in artificial intelligence (AI) technologies, includ-
ing Large Language Models (LLMs), have enabled new AI-powered
products and services to become more accessible to people, allowing
us to search for what we want to know quickly by asking questions
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(e.g., ChatGPT 1 [1]), to do tedious and repetitive tasks more effi-
ciently (e.g., Github Copilot2), and/or to enjoy some creative work
(e.g., DALL-E 33 is expected to offer even better experience). It has
been several years since AlphaGo beat a professional human Go
player [95], and now AI remarkably exhibits human-level perfor-
mance in a strategy game requiring more sophisticated skills such
as cooperation and negotiation [32]. Increasingly capable AI is also
expected to interact with humans and play a more important role in
high-stakes domains such as healthcare [81, 106], self-driving cars
(e.g., Tesla4, Waymo5), and cybersecurity [44, 53].

While these AI-assisted systems have prevailed in our daily lives,
several concerns have arisen. One is centered on ethical issues in a
wide range of sectors such as academia [20, 27], art [22, 31], social
media [102], etc., warranting well-grounded regulations along with
actionable practices [61]. Another pitfall lies in overreliance on AI
while humans are interacting with it, and the importance of possess-
ing appropriate reliance is more pronounced in more safety-critical
scenarios and systems. For instance, although AI-assisted image
diagnosis of cancer skin shows high accuracy, its performance is
still hampered by multiple factors such as the quality of datasets
[40]. Because of issues like these that reflect users’ uncertainty in
how to gauge trust in AI systems, advanced AI systems are being
widely deployed first where they can augment human capabilities
rather than replace them [23, 46, 50]. In applications such as de-
cision support and self-driving, AI technologies augment human
performance not by performing tasks that humans are incapable
of, but by performing human tasks with increased accuracy, consis-
tency, and endurance. Since the AI is performing tasks the human
is also capable of, the trust dynamic in these types of applications
can be different from other applications of AI technology because
the AI performance is understandable and the human can generally
take over control and perform the task themselves if they do not
agree with the AI approach. Therefore, it is imperative to design
interactions between humans and such agents to accomplish the
ultimate goal.
Human-AI teaming is one of the key research areas in human-

centered AI [11, 92] and precedents of human-AI interaction design
such as the dynamic SituationAwareness-basedAgent Transparency
(SAT) model [13] and interdependence analysis [48] paved the way
for enhancing humans’ capability and elevating team performance.
Yet, additional research work is necessary to further human-AI team-
ing research. For example, there is an inconsistency in the use of
vocabularies to describe teamwork between humans and synthetic
agents, including key terms such as collaboration, cooperation, and
coordination (3Cs). A variety of teamwork settings are described
differently using the 3Cs across the studies, making it difficult to
transfer design insights from one research study to another due to
this inconsistency. Thus, it is helpful to construct a frame of refer-
ence to discuss teamwork scenarios between humans and synthetic
agents in a more consistent and coherent manner.

1https://chat.openai.com/ (Accessed on October 21, 2024)
2https://github.com/features/copilot (Accessed on October 21, 2024)
3https://openai.com/dall-e-3 (Accessed on October 21, 2024)
4https://www.tesla.com/autopilot (Accessed on October 21, 2024)
5https://waymo.com (Accessed on October 21, 2024)

Another promising research avenue is to establish design princi-
ples and guidelines for improving human-AI team performance. The
Human-Computer Interaction (HCI) community has been propos-
ing design rules [93], principles, [73] and heuristics [71], helping
the practitioners make more informed decisions on UI design and
improve usability of systems, products, and/or services. Having
such design principles and guidelines in the human-AI teaming
community is expected to further advance research on improving
teamwork between humans and AI.

This paper is intended to address these gaps. First, we propose a
new approach to classifying teams based on how inputs to action are
used and affect the system. We introduce two types of teams: one is
a compositional control (inputs are combined) team, and the other
is a non-compositional control (inputs are independent) team. Our
new classification of teams clarifies distinctions between different
types of teamwork activities and enables a more consistent use of
the 3Cs. Also, our approach to mapping out different types of teams
underscores that a compositional control is unique to collaborative
teams, which makes it an interesting and relevant area of study (e.g.,
autonomous driving, collaborative decision-making). Therefore, our
main focus in this paper is on compositional control collaborative
human-agent teams.

Our study was originally inspired by a social physics study done
by Pentland [78] that revealed the effects of consistent patterns of
communication interactions between team members in effective
human teams. We similarly aimed to identify effective teamwork
patterns in a compositional control collaborative human-agent team
setting. We conducted an experiment by employing a moon lander
compositional control collaborative game, where participants were
asked to collaborate with an agent on a moon lander maneuver-
ing task while performing a secondary cognitive task concurrently.
Through the experiment, we tested and compared the effective-
ness of a taskwork-oriented UI and a teamwork-oriented UI in the
compositional control collaborative team setting. More specifically,
we hypothesized that the teamwork task of communicating with
humans about when an agent needs help from them was key to
achieving high performance in the task. We expected human-agent
teams using such a UI design to produce high team performance
while showing consistent interaction patterns. Although we did not
confirm this hypothesis, the results indentified fruitful insights into
patterns of interactions, relationships between agent capabilities
and UI designs, and design considerations for teamwork-oriented
UI.

In summary, this paper offers the following three contributions:

• We introduce a new approach to classifying teams based on
how inputs from team members are used; compositional and
non-compositional control teams

• We define cooperation, collaboration, and coordination in
relation to task goals and input compositionality, highlight-
ing a compositional control collaboration team as a unique,
interesting type of team

• We report experiment results highlighting the importance of
presenting information in a compositional control collabora-
tive task when humans work with a less capable agent and
hinting that conveying how much help an agent needs from
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humans in a timely fashion could help to amplify team per-
formance without overloading humans’ cognitive resources.

2 RELATED WORK

2.1 Teams and Teamwork
The literature [30, 34, 47, 51, 58, 87] offers definitions of teams whose
commonalities include four key aspects: members/individuals, com-
mon/shared goals, interdependence, and roles or functions; yet,
there is no consistent use of these terms [82]. Researchers have
proposed different ways to classify teams using various factors, in-
cluding skill, authority differentiation and experience of working
as a team [45], the amount of communication and task interdepen-
dence [79], and perceived human-likeness, autonomy, and interde-
pendence [62], process and risk [84], leadership assumption, plan
coordination, and task allocation [99], to name a few.
When team members work together, two important factors are

thought to contribute to team performance: taskwork and teamwork
[29]. Taskwork refers to components that individuals independently
perform, not necessarily requiring interdependent interactions be-
tween teammembers [86]. In contrast, teamwork has been described
as interactions, mechanisms, or activities performed by individuals
who work together toward goals. Within these definitions there
are some differences: some include the notion of coordination [9],
interdependence [47], or both [86]. Nissen et al. [72] tied taskwork
and teamwork with cooperation and collaboration, respectively,
meaning that collaboration requires interdependence between team
members whereas individuals work on separate assignments in a
more independent manner in a cooperation setting.

2.2 Cooperation, Collaboration, and Coordination (3Cs) in
Teams

Cooperation, Collaboration, and Coordination (3Cs) are terms typi-
cally used to describe the behavior of teams. However, these terms
tend to be used interchangeably as well as to be defined in different
ways, introducing an inconsistency across studies [12, 17, 59, 66]. In
the literature on human teams (e.g., management), commonalities
of collaboration appear to include: two or more members, working
together, and a common goal [4, 24, 109] although some present
unique perspectives (e.g., work together on tasks that cannot be
accomplished individually [67]). Definitions of cooperation tend
to contain the notion of benefit [6, 8, 37, 60] and voluntary action
[8, 19]. As mentioned earlier, Nissen et al. [72] addressed distinc-
tions between cooperation and collaboration associating the two
terms with taskwork and teamwork, respectively.
When compared to collaboration and cooperation, definitions

of coordination seem to be slightly more consistent across studies,
where key notions include synchronizing the timing of actions and
managing interdependencies [63, 64, 85]. Studies in the literature
on human teams, including disaster management have examined
the relationship between the 3Cs using different dimensions (e.g.,
following of common goals, shared resources, and shared risk [65],
levels of information exchange and partner asymmetry [54], author-
ity and resources & risks [100], and resources and information flow
[39]).

Inconsistencies in use of the 3Cs is also found in the literature of
teams with humans and synthetic entities [59, 66], and as seen in the
literature on human teams, collaboration and cooperation are prone
to be used interchangeably [7, 38, 52, 94, 101, 105]. Some Human-
Robot Interaction (HRI) studies addressed a distinction between
cooperation and collaboration; Bi et al. stated “During cooperation
tasks, robot and human partners interact without the need to know
what the other is doing in a shared task. However, during collaboration
tasks, both partners should communicate with and understand each
other ...” [7, p. 114]. Also, Kolbeinsson et al. distinguished them as
follows: “Cooperation, on the one hand, is described as a sequence of
actions towards a shared goal, that each person is doing independently
via subtasks towards the shared goal ... Collaboration, on the other
hand, is described as a sequence of shared actions towards a shared
goal” [52, p. 453]. Sidji et al. [94] acknowledged the inconsistent use
of cooperation and collaboration in the field of human-AI interac-
tion as well. From their perspective, human-AI cooperation strives
for improving joint welfare between humans and machines [21]
whereas human-AI collaboration is under the umbrella of human-AI
cooperation, where AI agents are expected to serve as assistants
and help humans achieve their goals [94]. With regard to the rela-
tionship between drivers and highly automated vehicles, Lee et al.
[59] also found inconsistency in the use of the 3Cs and addressed
their relationships by accounting for resilience and time scale.

2.3 Patterns of High-Performing Teams
The literature on social physics offers fruitful insights into improv-
ing teamwork. Pentland [78] investigated characteristics of pro-
ductive human teams employing wearable equipment to measure
sociometric data, showing that effective human teams exhibit con-
sistent patterns of communication between team members. Other
studies leveraging sociometric data also found patterns of interac-
tions exhibited by productive teams working on a wide array of
tasks [104] and collective design [108]. Understanding such patterns
of interactions helps to establish actionable solutions for amplifying
teamwork (e.g., introducing a common coffee break room to increase
interactions can improve the performance of a less effective team
[78]).

In the literature on human-AI teams, there are studies suggesting
characteristics of high-performing teams include the communica-
tion strategy [15], type [10, 42] and style [57], team coordination
stability [25], and human participation in control [70]. Additionally,
some research has applied social exchange theory aiming at dis-
secting interactions between humans and agents to improve team
performance [15, 16]. It would be promising to understand differ-
ences in interactions between high- and low-performing teams,
which could allow us to leverage patterns of interaction to make
a more informed decision on UI design and evaluation to improve
team performance.

2.4 UI Design Considerations for Human-AI Teaming
Researchers have examined how and what information is presented
to humans to improve team performance in an AI-assisted decision-
making task. Zhang et al. [107] reported that presenting an agent’s
confidence level helped with the human’s trust calibration process
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in a human-AI decision-making task; still, they highlighted the
importance of whether humans can bring and utilize their unique
knowledge to correct the agent’s errors. Bansal et al. [3] found that,
with AI explanations, humans tended to rely onAI recommendations
even when they were incorrect and stressed the importance of
providing humans with informative explanations instead of just
convincing ones. Prabhudesai et al. [80] observed increased time
to make a decision when uncertainty information was presented
to humans, resulting in a decrease in overreliance. Schemmer et
al. [89] introduced the appropriateness of reliance by accounting
for whether humans change their initial decision after receiving AI
advice and reported the positive effect of explanations on human-AI
decision-making performance.
Another rich body of research on human-AI teaming is cooper-

ative driving, and studies have investigated types of information
needed and presentation methods to accomplish safe driving. Al-
though some studies reported that showing uncertainty information
of automated system led to better human’s response to automation
failures [5, 43], others suggested a need for paying extra attention to
the representation and presentation of uncertainty/confidence level
information in automated driving. For example, Kunze et al. [56]
tested an anthropomorphic representation to convey automation’s
uncertainty in automated driving and observed safer take-over per-
formance at the cost of an increase in workload. Peintner et al. [77]
also pointed out a potential pitfall when confidence levels are dis-
played with numeric values in automated driving because such a
representation can overtax and/or unsettle humans when a low
confidence level was presented. With a focus on SAE Level 4 au-
tomated driving [74], Peintner and his colleagues [76] explored
different modalities to convey uncertainty information, revealing
that participants preferred vibrotactile and auditory channels rather
than a visual representation. Their study also found a trend where
the participants wanted an option to collaborate6 with and change
automation’s behavior even in Level 4 or 5 automated driving [74].

3 TEAM CLASSIFICATION BASED ON INPUT
COMPOSITIONALITY

3.1 Compositional and Non-Compositional Control Teams
Our definition of a team is consisting of multiple entities who engage
in activities interdependently to achieve goals while performing
their roles in a dynamic, timely, and context-specific manner. In
this paper, we use the term “agent” to refer to intelligent synthetic
entities with the ability to sense and collect data, communicate with
humans, take actions, and optionally to learn and evolve within
their environment [18].
Momose et al. [69] dissected different forms of teams with a

focus on how inputs from team members are used and affect the
system. Here, we extend their concept and introduce two types of
teams: compositional control (Fgure 1a) and non-compositional
control (Fgure 1b) teams. The types are based on the concept of an
action channel, which is the means by which actions are taken and
produce an effect on the system. Team members in a compositional
control team affect the system using the same action channels, and
type/magnitude of the action is determined by the simultaneous
6Note that [76] refers to this a cooperation rather than collaboration

composition of inputs from all team members. In contrast, in a
non-compositional control team setting, team members can have
different action channels that each affect the system independently.
Key distinctions between compositional and non-compositional

control teams are threefold. First, adding team members can im-
prove task efficiency of a non-compositional control team because
each additional team member can affect the system independently.
For example, adding one more member to a cleaning crew decreases
the amount of time needed to clean, because the new member can
clean simultaneously and independently with the rest of the team.
In contrast, a compositional control team combines all teammates
inputs in order to produce one action, and therefore increasing the
number of team members may help to improve their input quality
(e.g., a team comes up with a better business plan by consolidat-
ing inputs from all team members) although the efficiency is not
significantly changed.
Second, a compositional control team can take the form of a

non-compositional control team, but not vice versa. An input com-
position function in a compositional control team shares the same
notion as the discretionary task in Steiner’s task taxonomy [96],
meaning that team members can determine how to combine inputs
from each member through negotiations or based on a pre-defined
mixture ratio. Therefore, one member may wish to possess a full
control authority for one specific action, and likewise, others can
also have a full responsibility for different actions channels. In such
a scenario, the team behaves in a non-compositional team manner
as each has different action capabilities. Still, the team can reconfig-
ure the input composition functions at any time, and this flexibility
and reversibility are not achievable in a non-compositional control
team.
Third, hard interdependence, where goal achievement cannot

occur unless another member accomplishes a subgoal, can occur
only in a non-compositional control team setting. As some members
may have unique action capabilities in a non-compositional control
team, the team can face a situation where such members force the
remaining team members to stand by until their tasks are complete.
A compositional control system requires that team members are
able to perform any task, thereby removing the need to wait.

3.2 Input Compositionality and 3Cs
With our approach to distinguishing types of teams based on the
input compositionality, we propose definitions of the 3Cs. Figure 2
summarizes a relationship between the input compositionality and
the 3Cs. When entities work together on a common goal, we define
this situation as collaboration. Examples of compositional control
collaboration include automated driving and human-AI decision-
making (Cell A in Figure 2). As mentioned earlier, a team can
determine how to blend inputs from all members in a discretionary
task manner [96] and then generate one single team input per action
channel. An example of non-compositional control collaboration
(Cell B in Figure 2) is carrying and setting up chairs in a conference
room. All members have the same action capabilities and affect
the system independently; a team working on an additive task [96]
can fall into this category (e.g., the above mentioned cleaning crew
example).

, Vol. 1, No. 1, Article . Publication date: October 2024.
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(a) Compositional Control Teams (b) Non-Compositional Control Teams

Fig. 1. (a) In a compositional control team, team members (𝑇𝑖 ) simultaneously possess the same action channels where inputs from all members are composed.
The team has one single input per action channel, generating one single action (𝐴𝑗 ) affecting one of the states (𝑆 𝑗 ) in the system. (b) Team members in a
non-compositional control team have the same action capabilities or unique action capabilities, and their actions affect system states independently.

Fig. 2. Relationship between input compositionality and 3Cs. (A) Members in a compositional control team simultaneously have the same action channels
(e.g., in self-driving, a steering wheel and gas pedals), and their inputs are composed, affecting the system (e.g., in self-driving, vehicle physics, including speed,
attitude, etc.). (B) In a non-compositional control collaboration team, all team members have the same action capabilities (not the same action channels).
Each contribution independently affects the system. (C) A situation where team members have unique action capabilities introduces a hard interdependence
relationship [48], requiring coordination. (D) Cooperation is to be considered to be soft interdependence [48], improving team effectiveness and efficiency.
Appendix A provides examples of compositional and non-compositional control teams with diagrams.

Let us use a cooking game [97] to explain the 3Cs in a non-
compositional control team setting. In the cooking game, team

members cook tomato soup and deliver tomato soup dishes to
designated counters. Cooking tomato soup requires the following
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Fig. 3. Venn diagram of relationships between 3Cs in compositional and
non-compositional control teams. In this figure, collaboration is defined as
a situation where all team members have the same capabilities to fulfill
post-conditions (i.e., change the post-condition state from false to true).
Does cooperation occur only in coordination?What “help others accomplish
their own goals” mean? Unique goals that can be accomplished only by
them (ones have the unique capability to make the post-condition true)?

actions: picking tomatoes up, putting them in cooking pots, and
delivering cooked tomato soup to the counters. Each entity can
possess the same action capabilities. Cell B in Figure 2 shows a
non-compositional control collaboration setting, where all have the
same action capabilities and access to resources, but different action
channels. When each member works on each entity’s subgoal in a
hard interdependence fashion to accomplish team’s ultimate goal,
we consider this situation to be coordination (Cell C in Figure 2).
In Cell C, each member’s action capabilities are limited due to the
cooking room layout, inducing a hard interdependence (or forced
coordination [97]) situation.
Cooperation is a situation where team members help others

accomplish their own subgoals (Cell D in Figure 2), and soft interde-
pendence comes into play. Soft interdependence acts as a catalyst to
enhance team effectiveness and efficiency, meaning that while soft
interdependence is not required, but optional, there is a potential
for a team to work more effectively and efficiently by managing soft
interdependencies [48]. In the example shown in Cell D, the entity
in the left side does not have to let the other know about the fact that
the tomato soup is ready to pick up. However, doing so may result
in better team performance. Therefore, Observability, Predictability,
and Directability (OPD) [48] are expected to play a pivotal role in
cooperation. It should be noted that soft interdependence also serves
as a key element to improve team performance in compositional
control collaboration as suggested by the automated driving studies
focusing on conveying uncertainty information. (e.g., [56, 76, 77]);
although an automated driving agent does not necessarily convey
its uncertainty level to a driver, doing so is expected to help to
achieve safer driving. However, we do not use cooperation for a
compositional control team setting due to the fact that members in
a compositional team always work together on a common goal, and
each does not have each entity’s subgoal.
Our approach is expected to allow the research community to

discuss teamwork in different types of team activities in a more

consistent manner. Furthermore, Figure 2 highlights that a compo-
sitional control collaboration team (Cell A) is a unique, interesting
type of teams. Therefore, the rest of this paper presents our ex-
periment investigating human-agent teamwork in a compositional
control collaboration team setting.

3.3 Input Compositionality and Goal Structure
Another key distinction between compositional and non-compositional
control teams is the existence of a hierarchical goal structure, which
can be described using PlanningDomainDefinition Language (PDDL).
Compositional control teams do not require pre- and post-conditions;
in a compositional control team setting, all team members simul-
taneously have access to the same action channel, and the effect
on the system is dependent on blended inputs from all the team
members. Therefore, there are no incidents where one needs to wait
until others complete their tasks and make their post-conditions
true.

In contrast, there is a goal hierarchy in a non-compositional con-
trol team setting, where satisfying one’s post-condition serves as
others’ pre-condition, allowing them to proceed with their tasks. A
key consideration is which post-conditions each team member can
fulfill or make true. If all team members possess the same capabili-
ties to fulfill all post-conditions, there is no hard interdependence
because even only one entity can complete the team’s ultimate
goal (e.g., the rest of the team members are incapacitated) albeit
less efficient. This is a unique type of non-compositional control
collaboration team settings.
If one possesses a unique capability to fulfill a particular post-

condition that cannot be made true by others, such a team encoun-
ters hard interdependence, and we refer this situation as coordina-
tion (non-compositional control collaboration-coordination).
From our perspective, cooperation is an act to help others ful-

fill their pre-condition(s) regardless of whether or not the helper
possesses the same capability to make their corresponding post-
condition(s) true (???). Figure presents an example, where each of
the three entities can deliver and drop green, yellow, and red boxes
respectively; each possesses its unique capability. If one team mem-
ber delivering a green box finds one blue box on the way and comes
across the teammate who can deliver blue one, the green box deliv-
erer can inform the teammate of the blue box location, preventing
the blue box deliverer from searching for other rooms (i.e., shortcut).
In this case, the green deliverer satisfied the other’s pre-condition
(i.e., locates blue boxes). Therefore, cooperation is equivalent to
soft interdependence (i.e., observability, predictability, directabil-
ity), which is a nice-to-have feature and serves as a determinant of
teamwork [48].
Our approach highlights that compositional control teams are a

unique type team, and we argue that the very first type of human-ai
teams that can be employed in real-world settings should be a comp-
control collaboration team because of the input compositionality.

3.4 Role of Intent in Compositional Control Continuous
Teams

In compositional control teams, all team members simultaneously
have the same action channel(s), and their inputs are consolidated
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Fig. 4. Non-Comp Collaboration (all team members possess the same capa-
bilities to fulfill post-conditions, non-comp coordination (at least one team
member possesses a unique capability to fulfill post-condition(s), non-comp
cooperation (can happen in both non-comp collaboration and coordination
and helps others satisfy their pre-conditions)

Fig. 5. Warehouse example to explain 3Cs in non-comp control teams

based on a pre-determined and/or dynamic composition function.
Then, the team produces one single input for each action. Compo-
sitional control continuous collaboration teams are more likely to
work in a more time-critical situation when compared to compo-
sitional control discrete collaboration teams, which highlights key
design considerations for human-AI interaction.
In continuous collaboration, no inputs (i.e., absence of inputs

from one or multiple entities) can still advance the feedback loop;
physics/world environment does not wait for the team (e.g., the
gravity force). In contrast, in the case of discrete collaboration, gen-
erally, once a team reaches to an agreement and generates an output,
the team advances the next step. Given the these characteristics,
providing explanation is less effective in compositional control con-
tinuous collaboration when compared to a discrete collaboration
setting because while one explains something to others, the current
state immediately becomes the previous step/state.
Instead, intent-oriented communication plays a significant role

in improving compositional control continuous collaboration team-
work. Intent serves as a frame of reference, and the unique work
structure of compositional control continuous collaboration allows
team members to constantly observe others’ behaviors and measure
deviations between their original intent and what they are actually
doing. Conveying intent eliminates the need for team members to
predict others’ behaviors, helping to reduce team members’ cogni-
tive workload. In the case where one observes large deviations from

others’ original intent, he or she can provide his or her inputs to
rectify the current state.

It should be noted that in non-compositional control teams, ones
can still indicate their intent, but others may not be able to observe
entire process/action, preventing them from observing their behav-
iors and measuring deviations between their original intent and
actual behaviors over the course of task.

• If some team members in a non-compositional control team
do not have identical goals (i.e., they have unique goal(s)),
such a team automatically falls into coordination as hard in-
terdependency is introduced (i.e., you need to wait for others
to make post-condition(s) of their unique goals true)

• Non-compositional control collaboration teams can have iden-
tical goals whereas compositional control collaboration teams
always have the common (same?) goal.

• define different types of goals, including ultimate goal, com-
mon goals, identical goals, unique goals

4 IMPROVING COMPOSITIONAL CONTROL
COLLABORATION TEAMWORK

Our study was initially inspired by one of the social physics studies
done by Pentland [78], and we aimed to gain insights into what
kinds of characteristics effective human-agent teams exhibit in a
compositional control team setting. Momose et al. [70] identified
some patterns of effective teams in a compositional control type
human-agent team setting, although this was early-stage research
and the results were inconclusive. Momose and his colleagues [69]
extended their study by focusing on UI design for a compositional
control collaborative task, finding that instant feedback on how
human inputs contribute to task-based goal attainment is critical
to a compositional control collaborative task. In this paper, we at-
tempted to extend their work into UI design for a compositional
control collaborative task by investigating the differences between
UIs supporting taskwork (clarifying status and progress of the task)
and UIs supporting teamwork (clarifying status and trends in team-
mate performance).
In the presented experiment, we investigated the following Re-

search Questions (RQs):

RQ1 Patterns of Effective Teams: Do patterns of interactions
inform how well teams collaborate?

RQ2a UI Design: Do UI designs change patterns of interactions
between human and agent?

RQ2b UI Design: Does conveying agent intent help to improve
compositional control human-agent teamwork?

5 EXPERIMENT

5.1 Overview
To answer our RQs, we conducted a 2 (agent capabilities; between-
subject) × 3 (UI designs; between-subject) × 2 (secondary task diffi-
culty levels; within-subject) experiment employing a collaborative
human-agent game setting. The university’s IRB reviewed and ap-
proved the experiment (IRB Number: 22-114). We preregistered the
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experiment protocol, including our hypotheses and data analysis
method (AsPredicted #1430627).

5.2 Participants
We aimed at a target sample size of 192 suggested by G*Power [33]8.
Those who had a desktop/laptop with keyboard and a stable internet
connection were eligible to participate in the experiment. To recruit
participants, we employed convenience sampling, the university’s
general email forum, and announcements in classes. Some students
received extra credit in their class upon the completion of the study.

5.3 Experiment Setting
Figure 6 shows a moon landing task game screen, consisting of two
components: a lander maneuvering task (Figure 6a) and a secondary
cognitive task (Figure 6b). The maneuvering task was a compo-
sitional control collaborative task, meaning that a human player
and an agent shared the two action channels: a thruster control
to change the lander’s speed and a rotation control to change the
lander’s attitude. Both the human player and the agent were granted
the same control authority level, meaning that either of them pro-
vided thruster and/or rotational input, the lander reacted with a
full-throttle9. If one rotated the lander in a clockwise direction while
the other provided an opposite direction input, their inputs offset
each other, resulting in no rotational inputs. We employed the n-
back task [75] as the secondary cognitive task, which was done by
only the human player. The player was asked to respond to a target
stimulus (see 5.4.3), and the n-back task was introduced to divert the
player’s attention from the maneuvering task. The goal of the moon
lander game was to successfully land the moon lander in concert
with the agent while simultaneously performing the n-back task.
Both the maneuvering task and the n-back task contributed to the
overall game scores, which were computed as follows:

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑆𝑐𝑜𝑟𝑒𝑠 =
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑑 𝐹𝑢𝑒𝑙
× 𝑁 -𝐵𝑎𝑐𝑘 𝑇𝑎𝑠𝑘 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (1)

where the 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 was measured from the initial lander posi-
tion to the center of the landing pad and was randomized in every
trial. The 𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑑 𝐹𝑢𝑒𝑙 was the percentage of the amount of fuel
used during the landing. The fuel was consumed when the human
player and/or the agent provided thruster and/or rotational inputs;
a greater amount of fuel was consumed when the team provided
thruster inputs when compared to rotational inputs. If either the
player or the agent provided a thruster input or a rotational in-
put, the provided input was executed with a full throttle. Then, the
𝑁 -𝐵𝑎𝑐𝑘 𝑇𝑎𝑠𝑘 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 was calculated as follows:

𝑁 -𝐵𝑎𝑐𝑘 𝑇𝑎𝑠𝑘 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝐻 +𝐶𝑅

𝐻 +𝑀 + 𝐹𝐴 +𝐶𝑅 (2)

where 𝐻 , 𝐶𝑅, 𝑀 , and 𝐹𝐴 are Hits (responded to a target stimu-
lus in a timely manner), Correction Rejections (provided no inputs
7https://aspredicted.org/1BQ_19H
8Effect size of 0.263 informed by our pilot study, alpha at 0.05, power of 0.80, number
of groups of 8, and number of measures of 2.
9The study by Momose et al. [70] employing a compositional control collaboration type
task reported a trend where study participants did not change a control authority level
between a human and an agent even with a capability to switch the control authority
level in a real-time fashion.

when a non-target stimulus was presented), Misses (failed to re-
spond to a target stimulus in a timely manner), and False Alarms
(responded to a non-target stimulus), respectively. The participants
were instructed to maximize their overall game scores and were
able to check their performance after each trial. Figure 6c illustrates
the relationship between the three metrics in Equation 1.

5.4 Independent variables (IVs)
5.4.1 Agent Capability (IV1). We prepared more- and less-capable
agents showing different performance levels of the maneuvering
task. Both agents were designed using a benchmark heuristic agent
exhibiting 100% success rates. For the implementation of the more-
and less-capable agents, we employed a notion ofmalfunction, mean-
ing that we degraded the baseline heuristic agent by introducing a
probability of taking no actions. We selected 79% and 89% chance of
taking no actions for the more- and less-capable agents respectively,
yielding an average agent-only landing success rate of roughly 90%
and 40%.

5.4.2 UI Design (IV2). We tested three UI designs in the experi-
ment: (i) only HUD information (hereafter referred to as baseline),
(ii) lander physics, and (iii) agent state UI designs. The baseline
design showed only flight-related text information on the game
screen (see Figure 6a); the HUD information was presented across
all the UI designs. The lander physics UI design (Figure 7) offered
two features: a trajectory projection and a final approach aid. The
trajectory projection was designed to display a free-fall trajectory
(i.e., a white arc) by accounting for the lander’s physics, allowing
a player to predict where the lander impacts the surface with no
additional thruster inputs (Figure 7a). If a player and/or an agent pro-
vided thruster inputs, the white arc responded to them accordingly.
The final approach aid offered a thruster input recommendation
alongside the trajectory projection during the final approach phase
(Figure 7b). At the beginning of the landing task, the final approach
aid was grayed out, indicating that it was currently disengaged.
Once the lander approached the surface, a camera view zoomed in,
and the final approach aid became activated. The final approach
aid visualized the lander’s descending speed using a horizontal bar
with colors (Figure 7c). The red color indicated a too fast descending
speed, and therefore the team needed to provide thruster input to
reduce the speed. The yellow and green colors indicated that the
current descending speed was within a safe range although the yel-
low state recommended some thruster inputs to reduce the speed.
If the horizontal bar was in the gray color zone, the lander was as-
cending; the team needed to release the thruster inputs. The lander
physics UI was considered to be a taskwork-oriented UI, meaning
that it presented no information about agent’s state, including its
intent, but was designed to convey information about the landing
task based purely on the current lander physics.

The agent state UI (Figure 8) was designed as a teamwork-oriented
UI to convey information about the agent’s internal state by gen-
erating the agent’s intent path and introducing the notion of the
agent’s nervousness. At the beginning of a landing task, the agent
computes the intended path to the landing pad (Figure 8a), which
was generated based upon the benchmark heuristic agent exhibiting
a 100% success rate. The agent tries to follow the generated path, and
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Fig. 6. The moon lander maneuvering task was presented as a compositional control collaboration task whereas the n-back task was simultaneously performed
only by the human players. (a) Both the human player and the agent had the same action channels. The participants provided their thruster and/or rotational
inputs using the up- and left/right arrow keys, respectively. The goal of the team was to safely land the lander on a landing pad. (b) The n-back task was
employed to distract the human player’s attention from the compositional control collaboration task; the n-back task was introduced as a checklist task to the
participants. The human player was asked to respond in a timely manner whenever a target stimulus was presented. (c) Both the moon lander maneuvering
task and the n-back task contributed to overall game scores. The participants were instructed to maximize them by successfully and efficiently performing the
maneuvering task while accurately conducting the n-back task.

Fig. 7. The lander physics UI was intended to serve as a taskwork-oriented UI. (a) In the first phase of flight, a white arc was displayed, representing a free-fall
trajectory (i.e., if no thruster inputs were provided, the lander followed the free-fall trajectory). Once thruster inputs were provided, the white arc responded
based on the lander physics. A final approach aid was greyed out and displayed in the vicinity of the lander in the first phase of flight. (b) Once the lander
entered a final approach phase, the game screen zoomed in. Then, a final approach aid became activated. A white horizontal bar went up and down based on
the current lander vertical speed. (c) The team was asked to land on a landing pad with the display in either the yellow or green state. The red state indicated
too fast descending speed whereas the grey state was displayed when the lander ascended. The white horizontal bar had to be within the yellow or green state.

the agent and player are able to observe how well it maneuvered or
how much it deviated from its intended path. As we introduced the
notion of malfunction, there are deviations based on the capabilities
of the agent.
The agent state UI also offered the agent nervousness visualizer

in the vicinity of the lander (Figure 8b), which was intended to
convey two pieces of information. First, the player was informed of
whether the agent felt confident or nervous in performing a final
approach maneuvering. Second, the agent nervousness visualizer
let the player know whether the agent needed the player’s help or
not. The agent nervousness visualizer became active once the lander
entered a final approach phase, where the camera view zoomed in.
The size of a blue circle and its position were determined based on
two metrics: ΔVVertical and Input Ratio (𝐼𝑅).

The ΔVVertical is a difference between the current lander vertical
speed and the agent intended vertical speed at the current altitude;

the latter was determined based upon the benchmark agent. To
compute the 𝐼𝑅, we considered a history of key inputs from both
entities within the last 99 steps using the following relationship:

𝐼𝑛𝑝𝑢𝑡 𝑅𝑎𝑡𝑖𝑜 (𝐼𝑅) = 𝑙𝑜𝑔10

(
𝐻𝑢𝑚𝑎𝑛 𝐼𝑛𝑝𝑢𝑡𝑠 + 1
𝐴𝑔𝑒𝑛𝑡 𝐼𝑛𝑝𝑢𝑡𝑠 + 1

)
(3)

where 𝐻𝑢𝑚𝑎𝑛 𝐼𝑛𝑝𝑢𝑡𝑠 and 𝐴𝑔𝑒𝑛𝑡 𝐼𝑛𝑝𝑢𝑡𝑠 were the number of
inputs provided by the human player and the agent, respectively.
Using Equation 3, we obtained a negative value when there were
less human inputs, and more dominant inputs were provided from
the agent, and vice versa. Then, we introduced the notion of urgency
and computed it as follows:

𝑈𝑟𝑔𝑒𝑛𝑐𝑦 = Δ 𝑉𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙 × 𝐼𝑅 (4)
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Fig. 8. The agent state UI was implemented as a teamwork-oriented UI design. (a) In the first phase of flight, a white arc was displayed, representing an
agent’s intended flight path computed based on the benchmark heuristic agent. The white arc was static, meaning that any inputs did not affect the agent’s
intended flight path. An agent nervousness visualizer was greyed out and displayed in the vicinity of the lander in the first phase of flight. (b) Once the lander
entered a final approach phase, the game screen zoomed in. Then, the agent nervousness visualizer became activated. The size of the blue circle represented
the agent’s nervousness, and the position of the blue circle let the player know about the level to which the agent needed inputs from the player. (c) If the
agent could not control the lander to match its intentions, the blue circle moved toward the left side while becoming larger, prompting the player to participate
more actively in the maneuvering task. In contrast, if the lander deviated from agent intentions due to an excessive amount of human inputs, the agent asked
the player to disengage by shifting the blue circle toward the right side and making the diameter larger.

With the urgency value, the agent nervousness visualizer let the
player know if actions are required to return to the planned state
(Figure 8c). If a large speed difference was observed, and 𝐼𝑅 took a
negative value, the circle was becoming larger and moving toward
the left (red) side, prompting the player to more actively participate
in the maneuvering task. As the agent was designed to take no
actions occasionally (i.e., the malfunction), it was prone to fail to
reduce the vertical speed, and therefore the red side indicated a need
for inputs from the player to compensate for the lack of agent’s
inputs. In contrast, the player saw a situation where the circle was
getting larger and moving toward the right (blue) side. The blue side
showed a trend where the lander was ascending due to unnecessary
thruster inputs from the player (i.e., a positive value of 𝐼𝑅 induced a
large ΔVVertical), and therefore the player needed to release thruster
inputs if a large circle was placed on the edge of the right edge.

The participants were instructed to make the blue circle small and
attempt to keep it in the middle white range to achieve a successful
landing. The agent nervousness visualizer was expected to enable
the player to understand if inputs were required and how their
inputs helped the agent reduce its nervousness level in a real-time
manner.

5.4.3 N-Back Task (IV3). We employed 0- and 2-back tasks [75] as
easy and more challenging secondary cognitive tasks respectively,
serving as the within-subject factor. For the 0-back task, the player
was told a target digit in advance, and once a trial began, a series
of digits (from 0 to 9) were randomly presented on the left side
of the game screen; a stimulus was displayed for 0.5 seconds, and
there was a 2.25-second interval until the next digit appeared. The
player was asked to hit a space bar if the current digit matched the
prespecified digit. In the 2-back task, a target digit was not specified
before a trial, and instead, the player was asked to provide a space
bar input if the current digit matched the one displayed two steps
previously.

5.5 Dependent variables (DVs)
5.5.1 Human Key Input Profile [-] (DV1). we kept track of a key
input ratio between human and agent during a landing attempt.
To compute the human key input ratio, we initially normalized
the length of each trial. Then, we obtained the human key input
ratio by dividing the number of human keystrokes (i.e., thruster and
rotation control inputs) by the total number of keystrokes from the
player and the agent per one normalized time step. Profiles of the
human key input ratio in a trial were expected to illustrate how the
human player participated in the maneuvering task. We clustered
the profiles of human key input ratio to investigate differences in
patterns of interactions between high- and low-performing teams.

5.5.2 Average Game Scores [-] (DV2). for each trial, we recorded
the trial scores using Equation (1) and then computed averaged trial
scores for each block of 10 trials. We recorded zero as trial scores
for a failed trial.

5.5.3 Teamwork Workload [-] (DV3). we employed a modified ver-
sion of the Team Workload Questionnaire (TWLQ) [90], which was
administered in teamwork studies such as a UAV control task [91]
and a collaborative decision-making task [41]. The modified version
of the TWLQ consisted of Taskwork, Teamwork, and Team-Task Bal-
ancing components (Table 1). The taskwork and teamworkworkload
components asked the participants about their perceived workload
level for the n-back task and moon lander maneuvering task, re-
spectively. We computed the mean ratings of question items of the
Teamwork component, ranging from 0 to 100.

5.5.4 Team-Task Balancing [-] (DV4). we also computed the mean
of question items of the Team-Task Balancing component, ranging
from 0 to 100.

5.6 Hypotheses
We established the following four hypotheses.

H1 Patterns of Effective Teams: There will be differences in
the overall team performance between groups clustered based
on profiles of human key input ratio
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Table 1. The modified version of the Team Workload Questionnaire (TWLQ) administered in the experiment. The TWLQ consisted of the taskwork, teamwork,
and team-task balancing workload components. The taskwork and teamwork workload components asked the participants about their perceived workload
level for the n-back task and moon lander maneuvering task, respectively In the experiment, the n-back task was introduced as a checklist task to the
participants. The team-task balancing workload component was intended to capture the participants’ overall experience of the moon landing task.

Component Question

Taskwork (T) T1: How mentally demanding was the checklist task? (not demanding at all - very
demanding)
T2: How hurried or rushed was the pace of the n-back task? (not hurried at all - very
hurried)
T3: How hard did you have to work to accomplish your level of performance? (not hard
at all - very hard)
T4: How irritated, stressed, and frustrated did you feel during the checklist task? (not
at all - a lot)

Teamwork (TW) TW1: How mentally demanding was the maneuvering task? (not demanding at all -
very demanding)
TW2: How much input was required from you to successfully land? (none - a lot)
TW3: How difficult was it to understand the agent’s maneuvering abilities? (Very easy
- Very difficult)

Team-Task Balancing
(TTB)

TTB1: How mentally demanding was conducting the maneuvering task and checklist
task simultaneously? (not demanding at all - very demanding)
TTB2: How difficult was it to determine which task to focus on to accomplish both the
maneuvering and checklist tasks? (very easy - very Difficult)
TTB3: Howmuch did the agent help you determine which task to focus on to accomplish
both the maneuvering and checklist tasks? (a lot - none)

H2a UI Design: There will be more trials with the agent state UI
in a high-performing team cluster than baseline and lander
physics UI designs

H2b UI Design: The agent state UI will enable higher game scores
than baseline and lander physics UI designs

H2c UI Design: Participants with the agent state UI will report a
lower level of teamwork and team-task balancing workload

5.7 Experiment Procedure
The experiment was conducted remotely using the browser-based
moon landing game. The length of the experiment was approxi-
mately 45 minutes. First, the participants signed an informed con-
sent form and filled out a demographic questionnaire. Then, we
randomly assigned the participants to one of the six groups (i.e.,
two agent capabilities for the three UI designs). Next, a familiariza-
tion session was presented, where the participants watched short
tutorial videos and then performed familiarization trials of the moon
lander maneuvering task and the n-back task first individually and
then concurrently, allowing the participants to get acquainted with
the tasks and the assigned UI design. During the familiarization tri-
als, a familiarization agent that was 100% accurate was used to with
all participants. Then, two blocks with 10 trials each of the moon
landing task were presented, where the participants worked on the
moon maneuvering task with the assigned more- or less-capable
agent using the assigned UI design while also performing the 0-back
or 2-back task. We randomized the order of the n-back task diffi-
culty levels for each block. After each block, the participants were
asked to fill out the modified version of the TWLQ to report their

perceived workload. The two blocks were followed by a debriefing
session, where the participants were asked to provide their feedback
on the assigned UI design via an open-ended question form. After
submitting the form, the participants signed out from the online
experiment.

5.8 Data Analysis
We used R (version 4.0.2) [98] for our statistical analysis and set
the 𝛼 level at 0.05. We first conducted a manipulation check for
our n-back task treatment by running a t-test using the taskwork
workload scores. If we would not confirm the effect of n-back task
treatment via the manipulation check, we would consider the two
n-back task levels to be identical. For H1 and H2a, we employed
k-shape clustering using the dtwclust package [88] in R to generate
four groups based on profiles of human key input ratio in successful
trials across the four levels (i.e., 2 agent capabilities × 2 n-back task
difficulty levels). After clustering, we ran one-way ANOVAs across
the four levels to confirmH1, and if therewere significant differences
in game scores across the clusters, we performed follow-up analyses
with the Bonferroni correction. For testing H2a, we carried out
chi-square tests to investigate if there are significant differences
in frequencies between UI designs in each cluster. To test H2b and
H2c, we performed a three-way MANOVA using the MANOVA.RM
package [36] for the overall game scores, teamwork, and team-task
balancing workload scores. If appropriate, we conducted ANOVAs
and pairwise comparisons with the Bonferroni correction using
ARTool package [28, 103].
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6 RESULTS
A total of 177 participants completed the entire experiment10. There
were four participantswhose trial data in one blockwere not recorded
at all due to technical issues, and therefore we could not include
them in our data analysis. Also, one participant exhibited no suc-
cessful landing during the entire experiment, and therefore we also
excluded the participant as we pre-registered. As a result, data from
172 participants aged from 16 to 59 years old (𝑀 = 22.0, 𝑆𝐷 = 5.74)
were included in our data analysis.

6.1 Hypothesis Testing
Figure 9 shows (a) overall game scores, (b) taskwork, (c) teamwork,
and (d) team-task balancing workload scores across all the condi-
tions.With the taskworkworkload scores, we carried out aWilcoxon
signed-rank test as the manipulation check to examine the effect of
the n-back task, revealing a significant difference in the taskwork
workload scores between the 0- and 2-back tasks (𝑝 < 0.001). Thus,
the 2-back task did serve as the more demanding secondary task
than the 0-back task.

For testingH1, we performed k-shape clustering using the profiles
of human key input ratio (i.e., DV1) across the four levels (i.e.,
the agent capabilities and the n-back task difficulty levels), and
Figure 10 presents the relationships between the generated clusters
and game scores across the four levels. We ran one-way ANOVAs
to compare the clusters’ game scores across the four levels. The
ANOVAs revealed significant differences in the game scores between
the clusters in the more capable agent with the 0-back task (𝐹3,732 =
11.3, 𝑝 < 0.001, 𝜂2𝑝 = 0.0443) and the 2-back task (𝐹3,728 = 16.1, 𝑝 <
0.001, 𝜂2𝑝 = 0.0623) and in the less capable with the 2-back task (𝐹3,634
= 9.70, 𝑝 < 0.001, 𝜂2𝑝 = 0.0439); while no differences were confirmed
in the less capable with with the 0-back task (𝐹3,642 = 1.99, 𝑝 =
0.114, 𝜂2𝑝 = 0.00921). The follow-up analyses showed significant
differences between Cluster 1 and other three clusters in the more
capable agent with the 0- and 2-back tasks and the less capable with
the 2-back task (𝑝 < 0.01). The results suggest that high-performing
teams exhibited different profiles of human key input ratio when
compared to lower-performing teams although such trends were
observed only in the more capable agent condition, and therefore,
we partially confirmed H1.

For investigating H2a, we carried out chi-square tests for the
more capable agent with the 0- & 2-back tasks and the less capable
with the 2-back task condition, detecting significant differences in
the UI design frequencies between the clusters; the more capable
with the 0-back (𝜒2(6) = 172, 𝑝 < 0.001), the 2-back (𝜒2(6) = 130,
𝑝 < 0.001), and the less capable agent with the 2-back task (𝜒2(6)
= 77.8, 𝑝 < 0.001). Follow-up analyses were done using Pearson
residuals, and Figure 11 shows mosaic plots, highlighting in which
clusters each UI exhibited a greater and/or a smaller frequency
than the expected values. We expected the agent state UI design to
appear more dominantly in the high-performing cluster; however,
surprisingly, the baseline design exhibited such a pattern (in the

10Although our target sample size was 192 as we preregistered, there were participants
who completed the familiarization session and Block 1, but did not resume and complete
the entire experiment, resulting in the smaller total number.

more capable agent condition). Therefore, the results did not support
H2a.

To examine H2b and H2c, we performed a three-way MANOVA,
indicating a significant interaction effect between the agent capa-
bility and UI design (𝑀𝐴𝑇𝑆 = 48.7, 𝑝 < 0.01) while also detecting
significant main effects of the agent capability (𝑀𝐴𝑇𝑆 = 43.6, 𝑝 <
0.01) and the n-back task level (𝑀𝐴𝑇𝑆 = 46.2, 𝑝 < 0.001). As follow-
up analyzes, we ran two-way ANOVAs for the overall game scores,
teamwork, and team-task balancing workload scores. We confirmed
a significant interaction effect between the agent capability and
UI design on the overall game scores (𝐹2,338 = 16.6, 𝑝 < 0.001, 𝜂2𝑝 =
0.0894). Pairwise comparisons showed, in the more capable agent
condition, a significant difference between the baseline and lander
physics UI designs (𝑝 < 0.001), but no differences between the base-
line and agent state UI designs (𝑝 = 0.0603). As shown in Figure 9a,
in the more capable agent condition, the baseline design exhibited
higher overall game scores and outperformed the lander physics UI.
However, this trend is flipped in the less capable agent condition.
The pairwise comparisons showed a significant difference between
the baseline and lander physics UI in the less capable agent condition
(𝑝 < 0.05) whereas no differences between the baseline and agent
state were observed (𝑝 = 0.180). This means that the lander physics
UI outperformed the baseline design in the less capable agent con-
dition, but the agent state UI did not contrary to our expectations.
Thus, we did not corroborate H2b.

As for the workload measures, we found significant main effects
of the agent capability (𝐹1,338 = 6.25, 𝑝 < 0.05, 𝜂2𝑝 = 0.0181) and
UI design (𝐹2,338 = 3.23, 𝑝 < 0.05, 𝜂2𝑝 = 0.0187) on the team-task
balancing workload scores whereas only a significant main effect of
the agent capability on the teamwork workload was observed (𝐹2,338
= 7.99, 𝑝 < 0.01, 𝜂2𝑝 = 0.0231). To investigate where the difference in
the team-task balancing workload between the three UIs lies, we
performed pairwise comparisons, suggesting a significant difference
between the baseline and lander physics UI design (𝑝 < 0.05); there
were no significant differences between the agent state UI and either
the lander physics UI (𝑝 = 0.203) or the baseline design (𝑝 = 1.00).
As shown in Figure 9d, the participants in the group of the lander
physics were likely to report higher team-task workload scores
when compared to the baseline group. With these results, we did
not confirm H2c either.

6.2 Subjective Feedback
To facilitate our discussion, we list some subjective feedback pro-
vided by the participants during the debriefing session in Table
2.

7 DISCUSSION

7.1 Understanding Patterns of Interactions for More
Informed Decision on UI Design

We expected the agent state UI design to allow humans to interact
with the agents with a distinguishable pattern, resulting in higher
game scores. However, surprisingly, such a pattern was observed
with the baseline design UI design in the more capable agent condi-
tion, and the baseline design outperformed the lander physics UI
design. Our demographic questionnaire responses did not show any
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Fig. 9. (a) The baseline design outperformed the lander physics UI design in the more capable agent condition (𝑝 < 0.001) whereas we did not detect any
significant differences between the baseline and agent state UI designs (𝑝 = 0.0603). However, we observed the opposite trend in the case of the less capable
agent condition, meaning that the lander physics outperformed the baseline design (𝑝 < 0.05); the relationship between the baseline and agent state UI designs
remain same (𝑝 = 0.180). (b) The taskwork workload scores were used for the manipulation check, suggesting a significant difference between the 0- and
2-back tasks (𝑝 < 0.001). (c) We detected a main effect of the agent capability was found (𝑝 < 0.01). (d) In the less capable agent condition, the lander physics
UI design exhibited higher team-task balancing scores than the baseline design (𝑝 < 0.05) whereas no significant differences were detected between the agent
state and either the baseline (𝑝 = 1.00) or the lander physics (𝑝 = 0.203).

skewed distributions of the participants in terms of their game expe-
rience across the levels. We believe that the additional UI features of
the lander physics design were prone to induce humans to actively,
but unnecessarily participate in the maneuvering task during the
first flight phase, leading to less efficient maneuvering. The profiles
of Cluster 1 in Figures 10a and b suggest that actively participating
in the maneuvering task right before landing enabled higher game
scores when working with the more capable agent. This trend was
also confirmed by the subjective feedback from P31 and P96 (Table
2).
However, in the less capable agent condition, the relationship

between the baseline and lander physics UI designs was flipped,
meaning that the baseline design underperformed the lander physics
UI design. The baseline design was more susceptible to differences
in agent capability, resulting in a significant decrease in the overall
game scores in the less capable agent condition (see Figure 9a). This

observation stresses the importance of providing information about
a compositional control collaborative task to humans working with
a low capable agent. As seen in Figure 10d, Cluster 1 (i.e., the low-
performing cluster in which the baseline design was more likely to
appear than the expected frequency) showed a certain amount of
human interactions in the first phase, but less participation at the
end of the landing attempt; the similar profile was found in Cluster
3 in Figure 10a. In contrast, the opposite trend was observed in the
other three clusters.

In the experiment, the agent state UI did not exhibit specific pro-
files of human key input ratio leading to game scores superior to
the other two UI designs, which did not corroborate our hypothe-
ses. Still, our approach to focusing on interaction patterns helps us
understand characteristics exhibited by high- and low-performing
teams, offering additional design insights. For instance, in the case
of this game experiment setting, our observation in the relationship
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Fig. 10. The line plots show the relationships between the normalized time vs. z-normalized human key input ratio; each line depicts a centroid of profiles in
its cluster. The box plots show game scores in each cluster; ∗∗∗ indicates 𝑝 < 0.001. (a) Cluster 1 exhibited higher game scores than Clusters 2-4, and therefore it
is considered to be a high-performing cluster. Trials in Cluster 1 tend to show less human interactions in the first phase of flight. (b) Likewise, Cluster 1 is a
high-performing cluster given higher game scores than the other three clusters. Cluster 1 contains trials that show less human interactions in the first phase
of flight. (c) There were no significant differences between the four clusters. (d) Cluster 1 showed lower game scores than Clusters 2-4, suggesting that Cluster
1 should be a low-performing cluster. The line plot of Cluster 1 indicates that more human interactions in the first phase of flight are prone to undermine
game scores.

between the baseline and lander physics UI designs informed us of
the need for avoiding human over-participation in the first flight
phase and facilitating their participation before landing. The impor-
tance of facilitating participation before landing is more pronounced
when humans work with the less capable agent.

7.2 Design Implications for Teamwork-Oriented UI Design
The agent state UI was designed to improve human-agent teamwork
presenting information about when the agent needed help from hu-
mans in a real-time manner. Although we did not confirm H2a-c
centered on the agent state UI design, the results offered some im-
plications for designing teamwork-oriented UI. First, overall, the
participants tended to accept the agent state UI design features as
P29 and P145 articulated (Table 2). Furthermore, the subjective feed-
back on the lander physics UI appears to reinforce the consideration
of a teamwork-oriented UI design. As P32, P84, P93, and P100 hinted,
humans seek information about what the agent is currently doing
(P84 & P100) and will do in the near future (P32 & P93), conforming

the SAT model [13, 14] and observability and predictability in the
interdependence analysis [48].

In addition to the subjective feedback, the results of the team-task
balancing workload scores (Figure 9d) bolster the potential of the
agent state UI design to improve human-agent team performance.
The participants using the lander physics UI design were prone to
indicate higher team-task balancing workload scores than the base-
line UI design. In contrast, we did not observe significant differences
in the team-task balancing workload scores between the agent state
and baseline UI designs. Indeed, the agent state UI design did not
exhibit significantly higher game scores than the baseline in the
either more or less capable agent condition. However, the results
suggested that adding the agent state UI features did not lead to
a significant increase in the team-task balancing workload scores,
which appears to be promising. The next obvious step is to refine
the agent state UI features to improve overall team performance
without taxing humans’ workload, which remains an open question.

With respect to the agent state UI design, the nature of how the
more and less capable agents were developed may have blurred the
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Fig. 11. These mosaic plots represent how more or less likely each UI was to be observed in each cluster than the expected values. Cold colors suggest a trend
where a UI was more likely to appear than the expected value. In contrast, cells are filled out with warm colors when a UI was less likely to appear than
the expected value. (a) & (b) The baseline UI design exhibited a greater frequencies in Cluster 1 (i.e., the high-performing cluster) whereas the other two UI
designs were less likely observed in Cluster 1. (c) The baseline UI design tended to appear in Cluster 1 (i.e., the low-performing cluster) in the less capable
agent and the 2-back task condition whereas the lander physics exhibited smaller frequencies in Cluster 1.

Table 2. Subjective feedback on UI designs provided by the participants in the debriefing session. The participants were asked to share their experience with
the assigned UI design and type their responses in a text entry box.

ID Agent UI Feedback Type Quote

P1 M A Experience “It was hard to understand why there was a successful landing or not
a successful landing”

P29 L A Experience “The UI was intuitive and easy to understand.”
P31 M B Experience “The AI made it quite easy but also they did all of the work, you barely

had to click any button to move the Moonlander the AI did everything
on its own.”

P32 L L Recommendation “Making the A.I. feature more easy to understand/ anticipate.”
P84 M L Recommendation “Better visual for AI participation”
P93 L L Recommendation “An explanation of what the AI will do during the landing process

would be helpful so the user knows what to focus on and when.”
P96 M B Experience “I didn’t have to do the maneuver part at all.”
P100 L L Recommendation “Highlight when the AI is controlling the spacecraft on the trajectory

so it’s easier to know when it is primarily guiding and you just need
to monitor.”

P104 M B Recommendation “Allow the user to turn off the engines for the AI.”
P135 L B Experience “I felt like the AI would fight my input if it was doing something

incorrect and I would get distracted from the checkpoints [checklists]
trying to correct it.”

P145 M A Experience “The circle about nervous or confidence helped to control more easier
to control speed.”

Agent - M: More, L: Less | UI - B: Baseline, L: Lander Physics, A: Agent State

expected performance level. We employed the notion of agent’s mal-
function by introducing the probabilities of taking no actions over
the course of the landing attempt. This approach, indeed, induced
deviations from the agent’s intended flight path and vertical speed.
However, the agents were able to relatively quickly recover from
the deviated state independently (i.e., the agent expressed its high
confidence level shortly after requesting human’s need). Although
we did not observe a significant increase in either the teamwork or

team-task balancing workload scores, this agent behavior may have
confused the participants and diminished the expected performance
of the agent state UI design, which is underpinned by the subjective
feedback from P1 (Table 2). We believe that there would be a possi-
bility to obtain different results employing different types of agents,
including, for instance, an agent failing to maneuver in a specific
context rather than introducing malfunctions over the course of
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a landing attempt. This will play an important role in upcoming
experiments.

In the experiment, we did not discover conclusive evidence show-
ing that the agent state UI design improved overall game scores. Yet,
it is worthwhile further exploring the design space of teamwork-
oriented UI allowing better team performance considering the sub-
jective feedback and the team-task balancing workload scores. This
is supported by the self-driving simulation study results reported
by Peintner et al. [76] finding that not only is it important for UI
designs to convey confidence levels, but it is important that they
provide humans with an option to work together with agents and
to influence agents’ behavior.

7.3 Input Composition Function in Compositional Control
Collaboration

The moon lander maneuvering task was presented as a composi-
tional control collaborative task, where both the player and the
agent blended their inputs, and the combined inputs affected the
system (i.e., the moon lander). The experiment done by Momose et
al. [70] reported a trend where the participants did not change a
control authority level between a human and an agent and tended
to work in a fifty-fifty control authority configuration (i.e., a default
setting) in their compositional control collaboration task setting.
Based on their observation, we did not offer any capabilities to
change the control authority level in the experiment. However, the
subjective feedback from a few participants (P104 & P135) implied
the need for offering a way to determine how to compose inputs
from the player and agent in a flexible, timely manner. Even with
the more capable agent that was designed to exhibit high landing
performance levels, humans still appear to want a certain degree of
control, which is in alignment with findings by Roy et al. [83].
One of the easiest ways to do this would be, as P104 suggested,

to enable a manual control configuration by providing an agent
disengage option to humans. Another approach would be to imple-
ment a composition function where more control authority levels
are given to humans as more conflicts occur; in this case, an agent
would be designed to implicitly understand human’s intent and ex-
plicitly grant more control authority to humans. Due to the fact that
inputs are continuous, there are myriad of ways to compose inputs
from team members. Therefore, this opens another research area to
investigate the best approach to composing inputs to improve team
performance in a compositional control collaboration team setting.

7.4 Limitations and Future Work
We acknowledged several limitations in the experiment. First, we
could not hit the target sample size; we excluded the four partici-
pants as well as had 15 participants who have not completed the
entire experiment. Also, the study participants were primarily young
coming from the university community; it would be useful to ac-
quire a more diverse population in a future investigation. Yet, our
demographic questionnaire shows a wide range of participant’s
game experience, and therefore we believe that game experience
did not significantly confound the results.

In the experiment, we administered the modified version of the
TWLQ, offering the preliminary insights into the team-task balanc-
ing workload across the three UI designs. Yet, the questionnaire
validity needs to be checked, and each question item should be re-
fined so that we could better examine differences in the teamwork
and the team-task balancing workload between UI designs.
For testing H1 and H2a, we employed k-shape clustering and

pre-specified four clusters because we expected the four quartiles
to be sufficient and wanted to avoid proliferating the number of
clusters. However, just four clusters may potentially make it more
difficult to draw a conclusion. In future experiments, we will con-
sider different approaches so that we could gain a clearer insight
into the relationship between patterns of interactions and UI designs
in future work.

As discussed above, the agent implementation in the experiment
may have diluted the expected performance of the agent state UI
design. The UI showed the agent request for help, but based on the
agent’s ability to recover back to the intended flight path, the UI
changed back to normal, which may have confused some partici-
pants using the agent state UI design.

One condition that was not tested in this experiment was a com-
plete takeover by the participant for the agent, which happens when
the agent reaches a failure mode. A non-functional AI teammate
would force the participant to rapidly assess situation awareness
and then respond to complete a successful landing. Our hypothesis
is that the agent state UI would allow participants to achieve higher
performance by letting the participant know when the agent was
working well and when it needed help. The goal of showing trends
in nervousness and the urgency of the need for help is to enable the
participant to anticipate the need for help and to provide that help
early, before a takeover request event can occur. Takeover requests
such as these are common in self-driving cars and with autopilots
for air and sea vehicles. Expanding the testing envelope to include
full takeover may highlight an untested capability of the agent state
UI: allowing the operator to anticipate and course correct before
the takeover request event occurs.
The experiment employed the compositional control collabora-

tion team setting, where only two team members worked together
(i.e., dyad). Although near-term real-world applications of composi-
tional control collaboration teams are anticipated to be such a dyad
type of teams (e.g., a human driver and an automated driving agent
in self-driving, a doctor and AI in medical decision-making), it is
interesting to scrutinize compositional control collaboration teams
involving three or more entities. Such further investigations are
expected to identify additional interesting dimensions to distinguish
different types of teams, helping to polish our proposed approach
to classifying teams.
We believe that our approach to mapping out different types of

teams serves as a springboard for advancing research on human-AI
teaming by facilitating a more consistent use of the 3Cs. Also, our
lessons learned from the experiment are expected to be transferable
to more realistic compositional control collaboration team settings,
including an automated driving scenario. One of the legal and ethical
issues with self-driving lies in “hyping” its driving capability [26,
55], inducing people to possess inappropriate reliance. The driving
simulator study by Peintner et al. [76] implied the need for offering
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a way to human drivers to collaborate with a self-driving agent
even in SAE Level 4 or 5. We expect teamwork-oriented UIs to help
human drivers achieve appropriate reliance on a self-driving agent,
enabling safer driving.

8 CONCLUSION
We offered three contributions in this paper. First, we proposed
the new approach to distinguishing types of teams focusing on in-
put compositionality. We introduced the notion of compositional
control teams, where all team members possess the same action
channels simultaneously, and the system is affected by composed
inputs from all team members. Automated driving and human-AI
decision-making tasks fall into this type of team. Second, we dis-
cussed the relationship between input compositionality and the
3Cs aiming at a more consistent use of the 3Cs. Our approach to
mapping out different types of teamwork sheds the light on com-
positional control collaborative teams as such teams are a unique,
interesting type of team. Therefore, we conducted the experiment
using the moon lander game to gain insights into UI designs to
amplify human-AI team performance in the compositional control
collaborative team setting. The results stressed the importance of
offering information about the compositional control collaborative
task, in particular, in a case where humans work with a less capa-
ble agent. Also, while further investigations are certainly required,
the results hinted that conveying in a real-time manner the degree
to which an agent needs help from humans could improve team
performance without significantly taxing in humans’ workload. In
future work, we continue to examine teamwork-oriented UI design
in the context of compositional control collaboration human-agent
teaming and aim to apply design insights to more real-world com-
positional control collaboration team settings, including AI-enabled
self-driving cars.
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(a) Composition Control Collaboration (Continuous) (b) Composition Control Collaboration (Discrete)

Fig. 12. Examples of compositional control teams. (a) In a self-driving car [2, 74], a human driver and an agent have the same action channels; a steering
wheel and gas pedals. One of the examples of compositional control collaboration is “Horse-Mode” [35], where an automated system controls a vehicle while a
human driver can apply his or her inputs. (b) In a collaborative medical decision-making (e.g., an AI-assisted image diagnosis [40]), a doctor and an agent
generate their own decisions first and then compose them to produce one single final answer.

(a) Non-Composition Control Collaboration (b) Non-Composition Control Coordination

Fig. 13. Examples of non-compositional control teams. (a) In Blocks World for Teams (BW4T) [49], team members are asked to pick boxes up, carry them to a
designated location, and drop them off. All team members have the same action capabilities, and each contribution affects the system independently. (b) In a
simulation environment used in a study by McNeese et al. [68], three unique roles are assigned to team members, namely a pilot, a photographer, and a
navigator. The team’s ultimate goal is to efficiently take photographs of targets, requiring coordination.
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