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ABSTRACT
Intelligent systems are increasingly interacting with people, both
in their daily lives and through their use in safety critical systems.
Current research is focused on how to use intelligent systems in a
collaborative way as a teammate, rather than a tool. This requires
a better understanding of what behaviors enable effective human-
agent teams. This paper reports an experiment where a human
player collaborates with an agent to perform a maneuvering task
while concurrently performing a memory task. The player must de-
termine in which contexts the agent requires their input to achieve
better combined game plus memory task accuracy scores. We hy-
pothesized that high-performing teams would exhibit different pat-
terns of control inputs when compared to low-performing teams
and that these patterns of control would be made more evident
with user interfaces that increased operator situation awareness.
Preliminary results are inconclusive, but show different patterns of
interaction between high- and low-performing teams.

CCS CONCEPTS
• Human-centered computing→ Empirical studies in HCI.
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1 INTRODUCTION
There are an increasing number of sophisticated automation sys-
tems used in contexts ranging from our daily lives to safety critical
systems. Although such sophisticated machines are expected to
enrich lives, there have been some undesired incidents that result
from the interaction of automation with the automation user (e.g.,
[22, 24]). The Human-Computer Interaction (HCI) and other re-
search communities have advocated a focus on how users could
collaborate with such sophisticated automation systems as a team-
mate [5, 9, 19].

Current automation systems are leveraging both handoff and
composed input collaboration with user to overcome both perfor-
mance and regulatory hurdles [7, 17]. The inputs from the user
are integrated with those from automation so that the handover of
control authority can be made quickly or respect user guidance.

In human-human team contexts, Shared Cooperative Activity [1]
describes ways in which teammates cooperate to achieve a shared
goal. In particular, the cooperatively neutral approach describes the
case where the teammates have the capability to perform the task
on their own but may choose to work together. In this study, a
test environment is used to model a shared, cooperatively neutral
activity between a user and an intelligent automation system to
determine what enables effective teamwork and how interaction
between teammates can be improved.

2 BACKGROUND AND RELATEDWORK
With the advancement of machine capabilities, including Artifi-
cial Intelligence (AI)-powered systems, the research community
has shifted the focus from automation to autonomy [21]. Whereas
automation executes well-defined tasks and requires humans to
play a supervisory role, key features of autonomy include self-
governance, adaptability, and learning, generating the expectation
that autonomous agents work together with humans as teammates
[21, 23, 30]. As a means of facilitating teamwork between humans
and agents, Johnson et al. [18] introduced coactive design, identify-
ing interdependence between human and agents and emphasizing
mutual observability, predictability, and directability (OPD). Cila
[5] identified design considerations for effective human-autonomy
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teaming, such as intelligibility, task delegation, and when to release
or retain agent autonomy.

The simple mechanics and controllability of microworld domains
enable researchers to focus on key aspects of teamwork, and empir-
ical studies using them have produced insights into the dynamics of
human-agent teamwork (e.g., [2, 4, 6, 25]). The research community
has also applied knowledge from the literature of human-human
teams to human-agent teamwork, including social exchange the-
ory [3, 4], and implicit communication [2, 20] to name a few. For
instance, Chiou et al. [3] conducted a human-robot teaming study
employing the notion of primacy effect, indicating that more team
communication does not necessarily lead to better team perfor-
mance, and the information exchange strategies (e.g., which entity
pushes or pulls information) could contribute to improving human-
robot teamwork. Understanding such patterns of effective teams
will enable the definition of best practices of User Interface (UI) and
interaction designs for enhancing team performance.

3 EXPERIMENT
3.1 Objective
This experimentwas designed to provide a baseline for investigating
effective teams in a compositional control setting, where all team
members have the same action channels, and the effect on the
system is dependent on a combination of inputs from all entities.
The lunar lander game was chosen as a microworld for teamwork
experimentation because it is cooperatively neutral, where the
human and agent can, but are not required, to work together to
successfully land the lunar lander. The game provides the basic
infrastructure necessary to investigate a wide range of teamwork
issues, focusing in this experiment on identifying how the patterns
of interactions between human and agent differ between high-
and low-performing teams. In this experiment, we asked three key
research questions in this study:

• RQ1 (Agent Capability): Is there a distinction between teams
with a more capable agent and team with a less capable
agent?

• RQ2 (UI Design): Does UI design change team interactions
and augment teamwork?

• RQ3 (Patterns of Interactions): Do high-performing teams
have different patterns of interactions from low-performing
teams?

3.2 Participants
A power analysis was carried out using G*Power (version 3.1.9.7)
[10], suggesting a required sample size of 211 (effect size: 0.25, 𝛼 :
0.05, power: 0.80, number of groups: 6, number of measurements: 2).
With a 10% margin, we aimed to achieve the sample size of 240 and
assign 40 participants to each group. Participants were recruited
via a convenience sampling, the university’s information forum,
and announcements in classes.

3.3 Experiment Setting
The browser-based game (Figure 1)1 was employed to investigate
human-agent teamwork in a compositional control setting. Partici-
pants were asked to conduct a moon lander maneuvering task in
concert with an agent while conducting a memory task concur-
rently.

3.3.1 Moon Lander Maneuvering Task. The participants were asked
to safely land the moon lander on their choice of three landing pads
working in concert with an agent teammate. The player used the
up arrow key to engage a thruster and change the lander speed
and altitude, and the right & left arrow keys to rotate the lander
(see Appendix A.1). The initial amount of fuel was set at 1000 in
each trial, and the fuel was consumed only when the thruster was
engaged. The agent teammate was also able to engage the thruster
and rotate the lander. There was a control authority indicator on the
top center of the screen showing the control authority ratio between
the player and the agent, which was inspired by an interaction
strategy called “Horse-Mode” or H-Mode [12]. We included the
indicator in the game screen to investigate when and to which
extent the player explicitly grants or retrieves control authority.
The ratio was used to determine how to consolidate the inputs
from the player and agent (see Appendix A.2). In the beginning of
each trial, the player selected one of three target landing pads by
pressing the number 1, 2, or 3 key so that the agent teammate could
assist with the maneuvering task. The size and location of each
pad was computed based on an increasing Index of Difficulty (𝐼𝐷),
which corresponded to the Fitts’ Law paradigm [11] (see Appendix
A.3), and provided 100, 200, or 300 points upon successful landing.

3.3.2 Cognitive Load. While the team was working on the moon
lander maneuvering task, the player was asked to simultaneously
perform a memory task that simulates common secondary flight
tasks, such as checklist management. We employed the n-back task
to divert the player’s attention from the maneuvering task, requir-
ing the player to allocate cognitive resources to both tasks. In the
n-back task, a sequence of digits is presented one-by-one on the left
side of the screen, and the participants are asked to hit the space-bar
when they see a target stimulus. We employed a non-audio version
of the n-back task with 500ms of the stimulus presentation and 2500
ms of the blank period. Additionally, we presented a target stimulus
with a 25% chance to ensure that participants who did not conduct
the n-back task would receive penalties. In the experiment, we com-
puted the accuracy of the n-back task (𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦) by 𝐻+𝐶𝑅

𝐻+𝑀+𝐹𝐴+𝐶𝑅
where 𝐻 , 𝐶𝑅, 𝑀 , and 𝐹𝐴 are Hits, Correction Rejections, Misses,
and False Alarms respectively.

3.3.3 Game Performance. The participants were instructed that
both the moon lander maneuvering task and the n-back task con-
tributed to the overall game scores. This instruction was made to
avoid a situation where the participants did not pay attention to the
n-back task. In each trial, the team gained𝐺𝑎𝑚𝑒𝑆𝑐𝑜𝑟𝑒𝑠 that were cal-
culated by 𝐿𝑎𝑛𝑑𝑖𝑛𝑔 𝑃𝑜𝑖𝑛𝑡𝑠 + (𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝐹𝑢𝑒𝑙/𝑂𝑣𝑒𝑟𝑙𝑎𝑝 𝐹𝑎𝑐𝑡𝑜𝑟 ) ×
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 where 𝑂𝑣𝑒𝑟𝑙𝑎𝑝 𝐹𝑎𝑐𝑡𝑜𝑟 determines the degree to which
the teams can achieve the same game scores in different ways.
We selected the 𝑂𝑣𝑒𝑟𝑙𝑎𝑝 𝐹𝑎𝑐𝑡𝑜𝑟 value of 5 (see Appendix C). For
1The game was built on [26], and some of the icons used in the game were downloaded
from https://icons8.com and https://imgbin.com/ [accessed on 03/13/2023]

https://icons8.com
https://imgbin.com/
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Figure 1: Moon lander game: a human player was asked to conduct the moon lander maneuvering task (right) in concert with
an agent teammate while the player also performed a memory task (left).

a failed trial, the team did not receive any 𝐿𝑎𝑛𝑑𝑖𝑛𝑔 𝑃𝑜𝑖𝑛𝑡𝑠 and
𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝐹𝑢𝑒𝑙 points, resulting in zero game scores.

3.4 Experiment Design
With the experiment setting, we employed a 2 (agent capability)
× 3 (UI design) × 2 (n-back task difficulty) mixed design, where
between-subject factors include agent types and UI designs, and
the n-back task difficulty served as a within-subject factor.

3.4.1 Agent Capability. In this study, we assigned each partici-
pant to either the more or less capable agents whose actions were
coded based on heuristics of the moon lander maneuvering task
(see Appendix D). By tweaking some thresholds of final approach
behaviors, the more and less capable agents were designed to ex-
hibit approximately 80% and 50% chance of successful landings
respectively.

3.4.2 UI Design. In the moon lander maneuvering task, the par-
ticipants were assigned to one of the three UI design conditions:
(i) baseline, (ii) trajectory projection, and (iii) trajectory projection
with a vertical speed indicator (see Appendix E). The baseline UI
was a text-only Heads-Up Display (HUD) at the top of the screen
showing flight-related information. The trajectory projection dis-
played a predicted trajectory with a white arc in addition to the
HUD display, allowing the player to anticipate the lander’s future
position. The third UI design had the same features as the trajectory
projection except for during the final approach phase. The third UI
condition presented thrust recommendations based on the vertical
speed in a visual fashion with a color-coded vertical speed scale.
The design makes it easier to land successfully by focusing atten-
tion on the vertical speed in close proximity to the lander without
having to read the text of the HUD at the top of the UI.

3.4.3 N-Back Difficulty. There were two levels of the n-back task
(Appendix B): the 0-back task (easy) and the 2-back task (hard).
In the 0-back task, the participants were told a target digit before
each trial and needed to press the space-bar once the target digit

appeared and before the next digit appeared. In the 2-back task, the
participants were not told a target digit before each trial. Instead,
they were asked to hit the space-bar once they saw the same digit
presented in two previous steps, requiring them to memorize the
previously presented digits.

3.5 Experiment Procedure
The experiment was carried out remotely using the browser-based
moon lander game, and the length of the experiment was approxi-
mately 45 minutes. This study was reviewed and approved by the
university’s Institutional Review Board (IRB Number 22-114). In
the beginning of the experiment, the participants signed an in-
formed consent form and filled out a demographic questionnaire
(Appendix F.1). Then, a familiarization session began, where they
watched short tutorial videos and conducted familiarization trials
of the moon lander maneuvering task and the n-back task first in-
dividually and then concurrently. The participants were randomly
assigned to one of the six groups (i.e., 2 agent capability levels
for the 3 UI designs). During the familiarization session, all the
participants interacted with a familiarization agent that exhibited
better performance than the more and less capable heuristic agents,
and were instructed that the familiarization agent was only used
during the familiarization session. The familiarization session was
followed by two blocks with 10 trials each of the moon landing
task. In each block, the participants collaborated with the assigned
agent on the moon maneuvering task while also performing the
0-back or 2-back task. The order of the n-back task difficulty was
randomized. After each block, the participants filled out workload
and agent interaction questionnaires. On completion of the two
blocks, the participants signed out from the online experiment.

3.6 Measures and Data Analysis
As objective measures, we recorded the game scores, explicit control
authority changes, and human-agent keystroke ratios. As subjective
measures, we administered two questionnaires: NASA-Raw Task
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Load Index (RTLX) (see Appendix F.2) [14, 15] and an agent inter-
action questionnaire (see Appendix F.3). NASA-RTLX was used to
capture participants’ perceived workload and administered after
each block. The agent interaction questionnaire was also adminis-
tered after each block, asking the participants about: (Q1) agent’s
predictability, (Q2) agent’s performance, (Q3) whether they felt the
agent needed their help, and (Q4) whether they felt their help was
effective.

Using R (version 4.2.2) [27], a three-way repeated measures
MANOVA test was carried out for the game scores, NASA-RTLX
scores, and agent interaction ratings. We used the MANOVA.RM
package [13] and reported the modified ANOVA type statistic
(MATS). When appropriate, univariate follow-up analyses and post-
hoc pairwise comparisons were performed applying the Aligned
Rank Transform (ART) [29] and the ART-Contrasts (ART-C)[8].
The alpha level was set at 0.05. There were five main hypotheses as
follows; H5 was investigated through an exploratory analysis:

• H1 (Agent Capability | Objective): Participants who interact
with the more capable heuristic agent will exhibit higher
game scores when compared to participants in the less capa-
ble heuristic agent group

• H2 (Agent Capability | Subjective): Participants will report
the same level of agent’s predictability while there will be a
difference in perceived agent’s performance level between
the more and less capable heuristic agents

• H3 (UI Design | Performance): The trajectory projection with
the vertical speed indicator will exhibit the best teams’ game
scores and be followed by the trajectory projection and the
baseline condition

• H4 (UI Design | Workload): The trajectory projection with
the vertical velocity indicator will require the least amount
of workload and be followed by the trajectory projection
and the baseline in terms of game scores

• H5 (Patterns of Interactions): High-performing teams will
show different patterns of control authority changes and
keystrokes from low-performing teams.

4 RESULTS
A total of 60 participants aged from 17 to 61 years (𝑀 : 26.5 and
𝑆𝐷 : 10.3) completed the experiment session, resulting in a power of
0.44, significantly less than the target 0.8. The summary of the de-
mographic questionnaire appears in Appendix F.1. Figure 2 shows
averaged trial game scores across all the conditions in one block. Fig-
ures 3 and 4 present NASA-RTLX scores and participants-reported
Likert-scale ratings respectively. The MANOVA only detected a sig-
nificant effect of the agent types (𝑀𝐴𝑇𝑆 = 50.0, 𝑝 < 0.01). Post-hoc
analyses indicated a significant difference in the game scores (𝑝 <
0.01), the ratings of Q1 (𝑝 < 0.01), Q2 (𝑝 < 0.01), and Q3 (𝑝 < 0.01)
between the more and less capable agents. Therefore, the results
supported H1, and H2 was partially supported (i.e., the participants
reported different level of perceived agent’s performance but also
predictability). H3 and H4 were not confirmed as the MANOVA did
not detect a significant difference in the UI types (𝑀𝐴𝑇𝑆 = 19.8, 𝑝
= 0.377). As part of an exploratory data analysis, we computed the
human key input ratio as follows: first, we normalized the length
of each trial. Then, we computed the human key input ratio by

dividing the number of human keystrokes by the total number of
keystrokes from the player and the agent per one normalized time
step. Figure 5 shows the profiles of human key input ratios exhib-
ited by the top three and bottom three players in the course of a
trial. Note that these profiles indicate that high-performing teams
choose different patterns of interaction than low-performing teams
when working with the same type of agent.

5 DISCUSSION
5.1 Agent Capability: H1 and H2
The significant difference in the agents’ performance levels was
confirmed via the game scores, supporting H1. In terms of H2, the
participants reported different level of perceived performance (Q2)
but also predictability (Q1). As both agents were designed in a rule-
based, threshold-oriented manner, we expected the same level of
predictability of agents’ actions. As part of our exploratory analysis,
we computed the number of human key inputs (see Appendix G),
showing a trend that the players with the less capable agent tended
to provide more key inputs. This may be because they considered
the less capable agent less predictable and wanted to have more
dominant control of the lander, which is supported by Q3 (i.e., the
players with the less capable agent were more likely to feel the
agent needed their help). We did not find a significant difference
in the responses to Q4. The majority of the participants conducted
the maneuvering task with the 50%-50% control ratio during the
experiment, meaning that the magnitude of their inputs was re-
duced by half. This may have made it difficult for them to feel the
impact of their input on the lander movement regardless of the
agent capability.

5.2 UI Design: H3 and H4
The results did not suggest a significant difference between the
three UI designs, contrary to H3 and H4. Interestingly, the tra-
jectory projection with vertical speed indicator exhibited slightly
lower average game scores in the 0-back task condition with the
more capable agent when compared to the other two UI designs.
This may be explained if the inclusion of the vertical speed indica-
tor enabled the player to participate in the maneuvering task more
actively, resulting in more conflict inputs between the player and
the more capable agent. Also, we assumed that the participants
were prone to over-trust the more capable agent with the baseline
UI design, leading to higher scores. In further exploratory analy-
sis, we computed the number of conflicts between the player and
agent (see Appendix G), which does not appear to confirm the two
assumptions. Therefore, it is still unclear as to the effects of the UI
designs.

We did not detect any significant difference between the 0-back
and 2-back tasks although subjective feedback indicated partici-
pants found the workload to be different. In this study, we attempted
to measure human-agent teamwork employing the game scores
computed based on the maneuvering task performance and n-back
task accuracy, and the participants were instructed to maximize
the game scores. Although we followed our prescribed analysis
approach in this paper, the results seem to suggest that we should
analyze the maneuvering task performance (i.e., landing points and
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Figure 2: Averaged trial game scores in one block across all the conditions

Figure 3: NASA-RTLX scores across all the conditions; no significant differences were detected in this experiment.

Figure 4: Responses to the agent interaction questionnaire on a Likert-scale (1: Strongly Disagree - 5: Strongly Agree); in this set
of game: Q1 the agent’s actions were very predictable, Q2 the agent was performing the landing task very well, Q3 I felt that the
agent needed my help for the lander control, and Q4 I felt that my help was effective.
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Figure 5: Normalized time vs. human key input ratio; we extracted the three highest scores and the three lowest scores across
the two agent types. (a) when working with the more capable agent, fewer human key inputs during the second half of a trial
led to higher game scores; note that we depicted each line by slightly shifting it in a x-axis direction for better readability (b)
the interaction trend was flipped when working with the less capable agent, meaning more human key inputs result in higher
scores.

remaining fuel) and the n-back task performance individually, or
further increase the difficulty of the task.

5.3 Patterns of Interactions: H5
We expected different patterns of explicit control authority changes
between high- and low-performing teams. However, we observed
less frequent control authority changes than expected in the entire
dataset; 246 trials exhibited at least one control authority change
out of 1200 trials. Although we provided instructions as to how to
change the control authority during the familiarization session and
reminded the players of the corresponding keys between trials, the
players might have been prone to forget to explicitly change the
control authority levels due to their workload and ability to “work
around” the explicit setting with increased or decreased keystrokes.

The lack of explicit changes to control authority via the UI in-
dicator prompted exploratory analysis of the profiles of human
key inputs measured by the ratio of human key inputs to agent
key inputs. We arbitrarily chose to examine the three highest and
lowest scoring players to compare interaction patterns. Figure 5
(a) shows that the high-performing players tended to provide few
inputs in the second half of a trial when working with the more
capable agent. In contrast, Figure 5 (b) indicates the opposite inter-
action pattern where more human key inputs led to higher game
scores when working with the less capable agent. Figure 5 appears
promising to further investigate H5 for our future work. With a
solid understanding of patterns of effective human-agent interac-
tions, we could focus on how to augment low-performing teams’
performance by prompting them to exhibit the same interaction
patterns of the effective human-agent teams. In future work, we
will analyze the patterns of all players to determine the natural
separations between high, low, and average scoring players and
examine their implications for improving teamwork.

5.4 Future Work: More Sophisticated Teamwork
Setting

The three UIs tested in this experiment were designed to merely
display the game environment information (i.e., the lander physics);
there were no bidirectional information exchanges about each en-
tity’s intent or reasoning between the player and the agent. Investi-
gating a more sophisticated human-agent teamwork setting where
teammates are more transparent, provide explanation for decisions,
and adapt to coordinated behavior are promising directions for
future research (see Appendix H). For instance, we could allow the
agent to also select a target landing pad and examine how the team
resolves a conflict situation where the player’s selection differs. In
this scenario, the agent could explain its rationale by conveying the
relevant information supporting the decision (e.g. the remaining
fuel and distance).

6 CONCLUSION
More autonomous agents are expected to work with humans as
teammates, which poses a question as to how to formulate effec-
tive human-agent teams. We hypothesized that effective human-
agent teams exhibit different patterns of interactions from low-
performing teams, and UI designs would augment humans’ situa-
tion awareness helping to achieve a better level of performance. In
this preliminary attempt, we conducted an experiment using the
moon lander game environment where the human player worked
on the lander maneuvering task in concert with the agent while
simultaneously performing the memory task. We examined the
effects of the agent capability and the UI designs on the overall
team performance in the different memory task difficulty levels.
Although the results suggested that agent capability affected the
overall game scores, we did not reveal any significant differences
between the UI designs, which is not in line with our hypothesis or
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expectations. Yet, our exploratory data analysis provided us with
some implications for understanding patterns of effective human-
agent teams. We observed the different trends of human key input
ratio between high- and low-performing teams in both more and
less capable agent conditions.

Our future work continues to examine whether high-performing
teams exhibit different patterns of interactions from low-performing
teams. We believe that understanding such patterns could help us to
establish design principles for enhancing human-agent teamwork.
Built on the design considerations [5], we discussed potential future
work. We believe that the experiment reported here identifies key
issues necessary to understand and build effective human-agent
teams.
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A MOON LANDER MANEUVERING TASK
A.1 Moon Lander Control
The successful landing criteria included: (i) the horizontal speed
was between -1.0 and 1.0, (ii) the vertical speed was between 0.0
and 5.0, and (iii) the lander’s rotation angle was between -5.0 and
5.0. The information about the speed and angle was presented via
the HUD (i.e., the baseline UI design feature). The up arrow key
was used to engage the thruster, which changed the lander’s speed.
The left and right arrow keys were used to rotate the lander in
counterclockwise and clockwise directions respectively (Figure 6).
By holding down the arrow key, the team was able to provide the
inputs continuously. Additionally, the team was able to change the
speed and lander’s angle by pressing the up arrow key and the left
or right arrow key simultaneously.

A.2 Control Authority Ratio
The control authority ratio was displayed via the horizontal bar
with a color gradation on the upper center of the screen in addition
to the HUD (Figure 6). Whereas the left side color was always red
(i.e., the human icon side), the right side color was changed based
on the agent’s type: green for the familiarization agent, blue for the
more capable agent, and yellow for the less capable agent. The gray
rectangle showed the control authority ratio between the human
player and the agent. In the beginning of each trial, the gray box
was set on a 50-50% configuration (i.e., the middle of the bar), where
the human player and the agent had the same control authority.
With the 50-50% configuration, a full thrust or rotational input was
achieved if both hit the same key simultaneously (i.e., agreement).
If the human player hit the left key, and the agent hit the right key
(or vice versa), both inputs canceled each other out (i.e., conflict). If
only one hit the key, the key input became half of the full thrust or
rotational input. The human player was able to change the control
authority ratio by 25% by hitting the V or N key. The V key allowed
the human player to have more dominant control of the lander and
the gray rectangle moved toward the left edge. If the gray rectangle
reached the left edge, the human player had full control of the
lander, meaning that the agent’s inputs did not affect the lander’s
movement at all (i.e., fully manual). In contrast, the N key increased
the agent’s control authority ratio by 25%. If the gray rectangle
reached the right edge, the agent had full control of the lander,
and the human player’s inputs had no influences on the lander’s
movement (i.e., fully automated). Figure 6 shows an example of
how to consolidate rotational inputs from the player and the agent
in the case of 25% of the human control authority and 75% of agent
control authority. In this example, the rotational inputs from the
player and the agent were conflicting each other. However, due
to the more dominant agent’s control authority level, the lander
rotated in a clockwise direction with 50% of the magnitude of the
full rotational speed.

A.3 Landing Task Difficulty
In the beginning of each trial, the human player was asked to select
one of the three landing pads. Each pad had different landing points
depending on the Index of Difficulty (𝐼𝐷), which was inspired by
the Fitts’ Law paradigm [11], that is 𝐼𝐷 = 𝑙𝑜𝑔2

(
1 + 𝐷

𝑊

)
where

𝐷 was measured from the initial lander position to the center of
each landing pad, and𝑊 was given by the width of each landing
pad. The initial position of the lander and three landing pads were
randomly determined, generating three distinct 𝐼𝐷 levels of 1.7,
2.7, and 3.7 (i.e., easy, medium, and hard), and each offered 100,
200, and 300 points respectively. Once the player hit the 1, 2, or
3 key to determine the target landing pad, the target landing pad
was highlighted with yellow color (Figure 6) . The participants
were instructed that they had to select a target landing pad so that
the agent could perform the maneuvering task. We made the text
information about the selected landing pad yellow in the HUD until
the player hit the 1, 2, or 3 key, reminding them of the required
action.

B N-BACK TASK
The n-back task is widely used as a cognitive secondary task in
driving simulator studies [28]. We employed the n-back task to
increase the player’s cognitive load and divide attention with the
maneuvering task. To associate the n-back task with the moon
landing task context, we instructed the participants that the n-back
task was an analog to a flight checklist task to simulate a more
realistic moon landing scenario where astronauts communicate
with a co-pilot or mission control. Figure 7 shows examples of the
0-back and 2-back tasks with the four possible outcomes. We made
some modifications for this study while acknowledging the n-back
task standard. We employed a non-audio version of the n-back
task with 500 ms of the stimulus presentation and 2500 ms of the
blank period. Due to the nature of the landing task, the length of
each trial varies across trials as well as participants, meaning that
each participant received a different number of stimuli in each trial.
The n-back task accuracy was computed by 𝐻+𝐶𝑅

𝐻+𝑀+𝐹𝐴+𝐶𝑅 where 𝐻 ,
𝐶𝑅, 𝑀 , and 𝐹𝐴 are Hits, Correction Rejections, Misses, and False
Alarms respectively. During our pilot study, we randomly showed
a sequence of digits; however, we observed a situation where no
space-bar inputs still led to the 100% accuracy (i.e., no target digits
were presented, and all were correct rejections), making it difficult
to distinguish whether the player was dedicated to the n-back task.
Therefore, we decided to present a target stimulus (i.e., a space-bar
input is required) with a 25% chance to ensure that participants
who do not conduct the n-back at all can receive penalties for not
paying attention to the n-back task.

C OVERALL GAME SCORES
In each trial, the team gained 𝐺𝑎𝑚𝑒𝑆𝑐𝑜𝑟𝑒𝑠 that were calculated
by 𝐿𝑎𝑛𝑑𝑖𝑛𝑔 𝑃𝑜𝑖𝑛𝑡𝑠 + (𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝐹𝑢𝑒𝑙/𝑂𝑣𝑒𝑟𝑙𝑎𝑝 𝐹𝑎𝑐𝑡𝑜𝑟 ). After ex-
ploring different values, We selected the 𝑂𝑣𝑒𝑟𝑙𝑎𝑝 𝐹𝑎𝑐𝑡𝑜𝑟 value
of 5. Figure 8 shows how 𝐿𝑎𝑛𝑑𝑖𝑛𝑔 𝑃𝑜𝑖𝑛𝑡𝑠 , 𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝐹𝑢𝑒𝑙 , and
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 contributed to 𝐺𝑎𝑚𝑒 𝑆𝑐𝑜𝑟𝑒𝑠 with 𝑂𝑣𝑒𝑟𝑙𝑎𝑝 𝐹𝑎𝑐𝑡𝑜𝑟 of 5.

D HEURISTIC AGENT
In the beginning of the experiment, the participants were told a
hypothetical scenario where they were invited into an evaluation
session of an AI agent that collaborates with astronauts on a moon
landing task. They were instructed to evaluate one of the two AI
agents that were developed by space companies and provide their
feedback on their AI collaboration experience. For this experiment,
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Figure 6: The up, left, and right arrow keys were used for the moon lander maneuvering. The V and N keys were used to move
the gray rectangle left (i.e., the player’s control authority became more dominant) or right (i.e., the agent’s control authority
became more dominant) respectively. The player was able to reset the control authority ratio at the 50-50% configuration by
hitting the B key. To compute the 𝐼𝐷 values, 𝐷 was measured from the initial lander position to the center of each landing pad.
It should be noted that the snapshot shows TIME = 0:01 (i.e., the lander moved for 1 [s]), and therefore, technically, 𝐷 shown
here is not the same as what was used for the 𝐼𝐷 value calculation.

Figure 7: Examples of the four possible outcomes in the 0-back and 2-back tasks

three heuristic agents were developed: (i) the familiarization, (ii)
the more capable, and (iii) the less capable heuristic agents. The
familiarization agent was used only during the familiarization ses-
sion and designed to exhibit the best landing performance. There
are three steps that the heuristic agents execute. First, the heuristic
agents aim to minimize the distance between the center of a se-
lected landing pad and the end of the projected trajectory. Next, the
heuristic agents focus on maintaining the vertical speed at a certain
level so that the vertical speed does not become too fast. Then, the
heuristic agents initiate the final approach maneuvering and reduce
the lander speed as well as manipulate the lander angle to ensure
a successful landing. We tweaked the thresholds pertaining to the
final approach phase to design the more and less capable heuristic
agents. The more capable agent was designed to initiate the final

approach maneuvering earlier than the less capable agent. Figure 9
shows the landing performance levels of each type of the heuristic
agents.

E UI DESIGN
Three UI designs were tested in the experiment: (i) the baseline, (ii)
the trajectory projection, and (iii) the trajectory projection with
the vertical speed indicator.

E.1 Baseline
The baseline condition displayed the HUD information, including:
Score, Time, Remaining Fuel, Lander Speed & Rotation Angle, Hu-
man Control Authority, and Selected Landing Pad Number (Figure
10a). In this study, the player was required to select a target landing



CHI EA ’23, April 23–28, 2023, Hamburg, Germany Momose et al.

Figure 8: Possible game scores that the team could gain with 𝑂𝑣𝑒𝑟𝑙𝑎𝑝 𝐹𝑎𝑐𝑡𝑜𝑟 value of 5.

Figure 9: Performance comparison between the three heuristic agents; (a) the familiarization agent lands successfully all the
time. Whereas the more capable agent exhibits approximately 90% chance of successful landing across the three difficulty
levels, the less capable agent shows roughly 20% chance of successful landings for the medium and hard difficulty levels. (b) &
(c) the familiarization and more capable agents initiate the final landing procedure earlier to land safely with some vertical
speed buffer. In contrast, the less capable agent tends to land more aggressively and initiate the final landing procedure later
than the other two agents. The trial time shows that the less capable agent exhibits a shorter length of a trial when it lands
successfully, indicating the low frequency of thrust activities.

pad in the beginning of each landing attempt; otherwise, the agent
teammate could not conduct the maneuvering task. During our
pilot study, we observed situations where the player was prone
to forget to select a target landing pad. Therefore, we decided to
highlight the text line of the target landing pad information with a
yellow color until the player hits number 1, 2, or 3 key so that the
player could notice the need for selecting the target landing pad. In
addition to the HUD information, the baseline condition displayed
the control authority indicator on the upper center of the screen.
The screen zoomed in when the lander approached the surface.

E.2 Trajectory Projection
With the HUD information and the control authority indicator,
the trajectory projection condition displayed a predicted lander
trajectory with a white arc (Figure 10b). The white arc starts from

the lander and ends at the point where the predicted trajectory
meets the terrain.

E.3 Trajectory Projection with Vertical Speed
Indicator

The third UI condition provided the player with the same UI features
as the trajectory projection condition, and the only difference was
the provision of the vertical speed indicator that was represented
with the color box. The needle (i.e., gray horizontal bar) is vertically
moving in the box, and the color of the box is changing based on
the vertical speed. The indicator corresponds to four actionable
recommendations: (i) Disengage, (ii) Keep, (iii) Engage, and (iv)
Thrust. The disengage recommendation indicates that the lander
is ascending, and therefore the player needs to provide no inputs
(Figure 11a). The keep recommendation is a green state where the
player can ensure a soft landing with a buffer (Figure 11b). The
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Figure 10: (a) the baseline UI design contained the HUD information, (b) with the trajectory projection UI design, the white arc
informed the player of where the lander was heading to.

engage recommendation indicates that although the player can
land successfully, some thruster inputs are encouraged to ensure
a successful landing; the color of the box turned yellow with this
state (Figure 11c). The thrust recommendation shows a red color,
requiring the player to reduce the vertical speed (Figure 11d). The
borderline between the engage and thrust recommendation zones
was designed to align with the top of the landing pad, making the
player’s task easier; the player just needed to ensure that the gray
horizontal bar is above the surface of the landing pad (Figure 11e).
Figure 12 shows an example trial using the trajectory projection
with the vertical speed indicator.

F QUESTIONNAIRES
F.1 Demographic Questionnaire
The demographic questionnaire was administered after the partici-
pants signed up for the experiment by submitting the informed con-
sent. The demographic questionnaire asked the participants about
the following aspects: (i) age, (ii) handedness, (iii) computer experi-
ence, and (iv) game experience. The participants were prompted to
type their ages for the first question item and select right, left, or
both for the handedness question. The computer experience ques-
tion item offered options: (CE1) more than 70 hours/week, (CE2)
between 50-70 hours/week, (CE3) between 30-50 hours/week, (CE4)
between 10-30 hours/week, and (CE5) less than 10 hours/week.
Likewise, the participants were asked to indicate their game expe-
rience by selecting one from the following options: (GE1) Esports
(e.g., Esports club, competition), (GE2) greater than 20 hours/week,
(GE3) 10-20 hours/week, (GE4) less than 10 hours/week, and (GE5)
not a gamer. Table 1 shows the summary of the responses to the
demographic questionnaire across the six groups.

F.2 NASA-RTLX
We administered the NASA-RTLX to shorten the length of the
workload assessment process. We adapted the wording of the mo-
bile version of the NASA-TLX (https://humansystems.arc.nasa.gov/
groups/tlx/tlxapp.php [accessed on 03/13/2023]) and slightly modi-
fied by providing some examples; for instance, we included “e.g.,
thinking, deciding, calculating, remembering, looking, searching,
etc.” in the mental demand question. The anchor appeared once the

respondent clicked on a scale. The NASA-RTLX questionnaire was
administered after each block.

F.3 Agent Interaction Questionnaire
The agent interaction questionnaire consisted of four question
items. The first two questions were designed to ask the participants
about their perceived agent predictability and capability, which
were adapted from a trust scale suggested by [16]. We expected
them to report the same level of their perceived agent predictability
regardless of the heuristic agent types due to the rule-based and
threshold-oriented implementation. However, we expected that
the participants in the more capable heuristic agent group would
provide higher ratings when compared to those who interacted
with the less capable heuristic agent. The third and fourth question
items were set to investigate the relationship between their ratings
and behavioral measures captured by the keystrokes and the control
authority changes.

G SUPPLEMENTARY RESULTS
Figure 13 shows the number of human key inputs and conflicts
between the player and agent.

H HUMAN-AGENT TEAMWORK
CONSIDERATIONS FOR FUTUREWORK

Table 2 presents a set of considerations and examples to further
investigate human-agent teamwork using the moon lander game
environment, which is built on the design considerations proposed
by [5] and OPD [18].

https://humansystems.arc.nasa.gov/groups/tlx/tlxapp.php
https://humansystems.arc.nasa.gov/groups/tlx/tlxapp.php
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Figure 11: The vertical speed indicator was designed to convey the information about the vertical speed in a more visual manner.
The gray horizontal bar indicates the current vertical speed, and the color of the entire box is changed depending on the vertical
speed.

Figure 12: The vertical speed indicator appeared when the camera zoomed in. (a) the keep recommendation indicates that the
vertical speed is good for a successful landing, (b) the player is required to reduce the vertical speed when the indicator’s color
turns red.

Table 1: Summary of responses to demographic questionnaire across six Groups (abbreviations are as follows: MC: More
Capable, LC: Less Capable, B: Baseline, T: Trajectory Projection, T+V: Trajectory Projection with Vertical Speed Indicator, CE:
Computer Experience, and GE: Game Experience. The standard deviation is presented with parentheses.

Agent UI Players Age (years) Left Right Both CE1 CE2 CE3 CE4 CE5 GE1 GE2 GE3 GE4 GE5

B 6 27.0 (10.7) 0 6 0 1 2 1 2 0 1 1 0 3 1
MC T 13 26.2 (8.30) 1 11 1 3 3 3 4 0 1 2 2 2 6

T+V 9 28.1 (10.9) 1 6 2 2 3 3 0 1 0 2 1 4 2
B 14 27.8 (11.7) 1 13 0 1 2 5 4 2 0 4 4 4 2

LC T 9 24.3 (9.01) 0 9 0 1 1 4 3 0 1 1 1 3 3
T+V 9 25.1 (10.6) 0 9 0 3 0 5 1 0 0 1 4 1 3
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Figure 13: (a) Averaged number of human key inputs in a trial and (b) averaged number of conflicts across all the conditions.

Table 2: Potential avenues for further investigation of more sophisticated human-agent teamwork using the moon lander game
in relation to the design considerations for Human-Agent Collaboration [5] and Coactive Design [18]. The design considerations
with * are presented on [5, p.5].

Key factors Design considerations for human-agent teamwork Examples for future work with moon lander game setting

Observability - Are the agent’s intentions and behaviors observable
to users?

- The agent could indicate its own self-reported confidence
level during the maneuvering task.

Predictability - Are the agent’s actions predictable to users? - The agent could convey its intent explicitly and/or implic-
itly.

Directability - *What task is the agent to perform?
- *What level of autonomy is appropriate for this agent?
- How to nudge teammates to take a specific action to
improve team effectiveness?

- The agent could be designed to select a target landing pad
and change the control authority level.
- The agent could suggest that the player should change the
control authority level.

Interpretability - *How to explain the intent and behaviors of agent?
- How to enhance agent’s transparency keeping observ-
ability, predictability, and directability in mind?

- The agent could convey its intent, reasoning, and future
state via UIs.
- The team could employ explicit and implicit communica-
tion.

Teamwork with
Agents

- *How to establish a common ground between human
and agent?
- How to facilitate processes of resolving a conflict situ-
ation and reaching an agreement?

- The team consists of different types of members who have
different attitudes (e.g., risk-seeking or -averse team mem-
bers)
- The player and the agent select different target landing
pads, requiring them to resolve the conflict.
- The team detects cracks on a landing pad that prevents
the team from landing successfully, requiring the team to
reset their target landing pad).

Resilience - *When and how an agent can offer help to humans?
- *What are the most effective means for an agent to
request for help?

- The agent could offer or request help based on its self-
reported confidence level.
- The agent could over- or under-estimate its own capability
and the player could over- or under-trust the agent.
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