US005355435A
United States Patent 19 (11] Patent Number: 5,355,435
DeYong et al. 45] Date of Patent:  Oct. 11, 1994
[54] ASYNCHRONOUS TEMPORAL NEURAL [56] References Cited
PROCESSING ELEMENT U.S. PATENT DOCUMENTS
4,660,166 4/1987 Hopfield ....covcererrrerncvecrnenee 364/807
[75] Inventors: Mark R. DeYong, Las Cruces, N. 4,943,931 7/1990 Allen ..oecencircinsinnninennns 364/513
Mex.; Randall L, Findley, Austin, 5,004,932 4/1991 Nejime .. . 307/201
Tex.; Thomas C. Eskridge, Las 5,155,377 10/1992 Castro .. 307/201
? . . 5,172,204 12/1992 Hartstein ... 307/201
gg;::s’RIg'cxfl’l‘g gdhg'smpher A 5214745 5/1993 SUtherland ..o 395/22
1 ? ? ' 5,237,210 8/1993 Castro ....... 307/201
5,255,348 10/1993 NOVOV .cccevrrrrnrerernrscreesarsaenns 395/24
[73] Assignee: New Mexico State University Primary Examiner—Allen R. MacDonald
Technology Transfer Corp., Las Attorney, Agent, or Firm—Jeffrey D. Myers; Deborah
Cruces, N. Mex. A.. Peacock
[57] ABSTRACT
[21] Appl. No.: 885423 An asynchronous temporal neural processing element.
The processing element is useful in solving problems
- from the class of temporal signal processing problems
[22] Filed: May 18, 1992 and is modeled closely on the sub-cellular biology and
electrophysiology of neurons having chemical synap-
[51] Int. CLS crvriiirnrnrerenrercsnennaeians GO6F 15/18 ses.
[52] US. Cl coircimcreennrenenrrvaseanens 395/24; 307/201
[58] Field of Search ..............c...... 395/24, 27; 307/201 19 Claims, 58 Drawing Sheets
{ N\

L

AXON HILLOCK



U.S. Patent Oct. 11, 1994 Sheet 1 of 58 5,355,435

FIGURE 1(A)

FIGURE 1(B)



U.S. Patent Oct. 11, 1994 Sheet 2 of 58 5,355,435




U.S. Patent Oct. 11, 1994 Sheet 3 of 58 5,355,435

VPSR
mV 4
581
EPSP
~68+4--- - D e ~VREST
IPSP
-804




U.S. Patent Oct. 11, 1994 Sheet 4 of 58 5,355,435

VMEMBRANE

WINEVREST-MPSP
o) 5 10 15 30 25 msS

FIGURE 4



U.S. Patent Oct. 11, 1994 Sheet 5 of 58 5,355,435

20

|

| Incomm/g'AF’ o5




U.S. Patent Oct. 11, 1994 Sheet 6 of 58 9,355,435

SHUNTING SYNAPSE

EXCITATORY SYNAPSE INHIBITORY SYNAPSE

L

AXON HILLOCK
FIGURE 6




Sheet 7 of 58 5,355,435

Oct. 11, 1994

U.S. Patent

wCOmm wCOOm WCOMN WCOON wCOM_. wCO"O_. WCO__m SuUQ

L HINDIA
JNIL

dV-dSdd -dSdl -

° Y ° @ ° AWA\ONS)
‘q::->O.v
3

O'Zc ‘3HNLVH3IdNTL



Sheet 8 of 58 5,355,435

Oct. 11, 1994

U.S. Patent

8 HANDId
dNIL dSd3 - dSdl- dV- dV-
SUQQg WCOA“U._V WCO“OM WCO@N WCO_OT—. SuQ
o —— = a - = o xU||>O-o

\
S

TAOV

O'Zc ‘FAHNLVHIdNTL



Sheet 9 of 58 5,355,435

Oct. 11, 1994

U.S. Patent

0 (H).L3S3H
SSA | :ul | 6
_Ss_ FINT TEFNI
(V)6 3HNOI T_ L m“ EMA
._.m:z
N:>_
“
V JAON aan
(H)L3S3y|
_ C m_w._m o :m_l mi
o | ?T _I_ — —}-MA
2 il I H r_
\ .
1N0 | & = L + 4 L _l_ v N | 2
_J“ = or,._\_,_ ] - NI
(gt sii) J W 19 1
! 38 dan
ZMA



Sheet 10 of 58 5,355,435

Oct. 11, 1994

U.S. Patent

()6 3HNOIL (H)13s3y
:
wm>_ ¢ |
oI PHAT T m>>>
T_ Hﬁs_ IT_
llew
\,
2N
.‘l.
V 3AON aap -
| | !
Q|_ 0 1 e b (H)13s3y
SSA| - G e N 1] €
ZHNC LAY I LB SN [ AYW Y BT [N LMA
5 15 o — _L H
\§
®  1n0j|z, na - S
_ AN L S 4 LN 2
1 _
STy :t“m | =L
_ I 19 I
18 ! ddA




Oct. 11, 1994 Sheet 11 of 58 5,355,435

U.S. Patent

vV 3dON

(0)6 34
ol 0 (H).L3s3y
T
| |
SSATToTW [ § V] |
U_ T Hema
_ |~|m_._>_ J j_ 6
e
Ol Tz
AI.—
oy
| b
] e :HIvEmmm
/AR ] R 1
¢ N—._\é L _ 1_ \ |
_ _,er ,
T dE mL 7 Shin | z
S e C 2 L
O LN @g _.I._ |1
ls aana'
ZMA

<



Sheet 12 of 58 5,355,435

Oct. 11, 1994

U.S. Patent

(H) 13834
91 ss
__..P.ME,?NH_WE \wo
EMA §s_J
A )
)6 34NOI4 a.&
[t
|
SMA m_m_.m Em_mv_m - HMA
o] M_..m_, ¢H SS
“ BIN | ZIW m:znh Es_m HN ﬂwﬂ_ﬁ \_w_s_r 0
u_l _I _I_ H: m"u ‘ _..rfr_ _L_.ms_ow> e
c - ° _L < TN
1nd-g 2l T 6 < |
E O Led L L o
C[Bun [ N _HW:)_ [olN 6N ms__.\._ N an) _Ls_r_ NEZ
| aan

(1) 13s3d



Sheet 13 of 58 5,355,435

Oct. 11, 1994

U.S. Patent

01 HANDIH
JNIL

wD.V_. L wDN_. L WDO_. L w:m.o WDQ_.O ..WJ.N.O wDNn.O WDO.\@O.O

A0
NO'E.
NO'E

TAO' P

0'Zc ‘3HNLvHadNIL

NO'S



Sheet 14 of 58 9,355,435

Oct. 11, 1994

U.S. Patent

1T HINOIA
JINIL

suQ

SUQOL wCOQ owN@

sSuQt

su0g

NAOO

Y

NO' L

IRAL K

TAO'E

TNAOP

0’4¢ :aHNLVvHIdNTI L

NO'G



Sheet 15 of 58 5,355,435

Oct. 11, 1994

U.S. Patent

¢l H4NODI4
dNIL

sSNnO° L w:m.O w:m.O WD.V..O WDN_.O sno’

0’Lc -:3HN1LVHIAdNTL

Ao'0

[ A0t
It AO2
[ noe
It AO"v

—NO'G



Sheet 16 of 58 5,355,435

Oct. 11, 1994

U.S. Patent

€1 HINDOI4
JINIL

sSnQo’

w_..;N. L WDN_. L mDO_. L

sng 0

SN9"0

SNy 0

WJN.O

O'Z¢ -3HNLVvHIAdINTL

A0'0

A0
"NOZ
r NO'E

T N0V

NO'S



Sheet 17 of 58 5,355,435

Oct. 11, 1994

U.S. Patent

V1 HI4NDI1
JNIL

SuUQ

SUQOlL WC@Q wCDm wCDv mC@N

NOO

NO'L

TNOC

TAOE

TNAOV

0'Zc -adNLivd3adngl

NO'S



Oct. 11, 1994 Sheet 18 of 58 5,355,435

U.S. Patent

N

FIGURE 15



Sheet 19 of 58 9,355,435

Oct. 11, 1994

U.S. Patent

(v) 91 3HNBId

0

R | SSA
LIN Hs_ MF v Nms_ O A JM:f _.J:\ TL ) EN _\,_:umo_n_
zzoomIr ml | \_L__u_ % _.__.._m<_m> m._ m_\m_

o+ 4 gL

m<_m_>m_m_:\,__._.t_..t _|.4q Fu_I dn e _.._ms_ ITgle)

QdAly P%_ ganl o 0ci Ssh v_,“o dnH
m.o.s_:uT LI g VW[ | fewl
¢ gan [T IC 'Pr [
. ! ‘ !
ISP [~ oW gq)
' RINOLN T
ob



Sheet 20 of 58 5,355,435

Oct. 11, 1994

U.S. Patent

(g) 91 34NOI

YSVIGA ESVIAA  ZSVIgA
, 6 1 LT S T SSA,
f C < 10
LIWT  6W 8n 9N W eN] [T ¢
LN v Z
Ol | I Han
9 L aan
LSVIGA



Sheet 21 of 58 5,355,435

Oct. 11, 1994

U.S. Patent

(D) 91 3dnvid

_ _ ‘ — 0
TG ﬂ_lmv:“/_\ SS_L \_ \_ m:>_\_ _.“_._2
T N /_I_ r_I_ﬂ/_
- Aain T
—
Gl
L —-E .
& . Tl A e ‘ G
nmoa H——€— = —— i< dn
9 g
1no | T 8N _v_>_ m__>_ _\._>_
> “ | —pl | | le— 6
o} lf\|_ g 9N L als
L _ H rsvian
|
Nm<__m>_ _T_\_o:\,_ J\ /_lvws_ /_uvms_ F
1
aana




Sheet 22 of 58 5,355,435

Oct. 11, 1994

U.S. Patent

wDQP sngi sNnol

L1 44NDIH

JNIL

sng

0

sng Ao&_\wo Amvm\yw (27)\

NO’L-

i

o

: NO'O

S

NO'L

ALK

TNOE

TAO P

T

O'Zc -3HNLVHIdINTL

NO'S



Sheet 23 of 58 5,355,435

Oct. 11, 1994

U.S. Patent

snEg

81 HINDIA
ANIL - (A (BA- (PIA-
m_\_o_m WDO.V WJO_N 51810
\o\\l | \>OO
N (0 X<

-

=

. -l.//.f.f/f- ) . : ‘ T A0V

ffl

O'Zc :3HdN1vHIdNTL



U.S. Patent Oct. 11, 1994 Sheet 24 of 58 5,355,435

TEMPORAL SIGNAL PROCESSING

/N

NON-NUMERICAL PROCESSING NUMERICAL PROCESSING
PHASE RELATIO!
VARIABLE BINDIN KNOWLEDGE REPRESENTATION FILTERING, TIMING
RECOGNITIONMATCHING FREQUENCY RELATIO ENCODING/MODULATION

CONTENTION/ALLOCATION  CORRELATION/SYNCHRONIZATION

FIGURE 19



U.S. Patent

Oct. 11, 1994

3‘-ﬂ©®ﬂﬁﬂu

FIGURE 20

Sheet 25 of 58

-— 80
-— 81

-~— 82
-— 83
-—1 84
-— 85

-—i 86

-—i 87

-— 88
-— 89

-— 90

5,355,435



U.S. Patent

B

FIGURE 21(C)

Oct. 11, 1994

Sheet 26 of 58

STOP

S{;ﬁ£%%<;;>hil/}mx
g

FIGURE 21(B)

A 95

ﬁ(}

FIGURE 21(D

5,355,435



Sheet 27 of 58 5,355,435

Oct. 11, 1994

U.S. Patent

(D) TANOIL

() AANOId

(V)7 2INOIL

FNIL
Suog 1

<U

SuQO SuQ0

SUQSc Su00c

G'0O-

NG G

NG O-

d HOX V-

NG G
NG O-

NG'S

0'Z2 ‘FHN1Lvd3adW3l



U.S. Patent Oct. 11, 1994 Sheet 28 of 58 5,355,435

START 96 K
— ya STARTCIO )
—< STOP ¥
STOP| :Z—QA
_< 1J
PULSE OSCILLATOR 98— IE<> o
FIGURE 23(A) 1Y
100 I~
START DQA j -
STOP 4

FOUR BIT OSCILLATOR

SINGLE CELL OSGILLATOR
T FIGURE 23(C)



Sheet 29 of 58 5,355,435

Oct. 11, 1994

U.S. Patent

Q)T TANDIL

(g)yc TINOIA

(V)vZ 29ND14

SuQOc Suogt

dOlS -1HVLS -

suQg suQ

(=] (=]

{w] - (=] 0

0

Z21N0* ZNI°

0'Z¢ IHNLvHIdWEL

NG O

NG'G

NSO

NG'S

NGO

NS'S



Sheet 30 of 58 5,355,435

Oct. 11, 1994

U.S. Patent

JNIL I LNO. k NI .
m:.ovN wc0©w wcolow suozg | suos SuQy wcmwx .
(@ST TANDH _ :%\ %
21lNO-2NI° ' ASO
(D)ST TANDIA Q_\ /Qiﬁ E
. € 1NO " € NI LSO
(@)ST TINDIA . z\r/@

vFDO ¥ NI -®

b?:_\ N

NGO

(V)ST TINOM |

0’'Zc ‘FHNLVHIdINIL



U.S. Patent Oct. 11, 1994 Sheet 31 of 58
N-2 N-1 N
/ \ [ \ [ \
SINGLE - CELL SINGLE - CELL SINGLE - CELL
OSCILLATOR OSCILLATOR OSCILLATOR
\ J — ) \ y
o O Q@
02— 0 | ouT
e
{ \ — N/ _ \
SINGLE - CELL SINGLE - CELL SINGLE - CELL
OSCILLATOR| |  OSCILLATOR| |  OSCILLATOR
\ J \ J \ ),
3 2 1

FIGURE 26

5,355,435



U.S. Patent Oct. 11, 1994 Sheet 32 of 58 5,355,435

SINGLE - CELL SINGLE - CELL
OSCILLATOR OSCILLATOR

0
0

SINGLE - CELL
OSCILLATOR
SINGLE - CELL

OSCILLATOR ‘

Q@::1 00

SINGLE - CELL
OSCILLATOR

<?>

SINGLE - CELL
OSCILLATOR

~

104

FIGURE 27



U.S. Patent Oct. 11, 1994 Sheet 33 of 58 5,355,435

/ BT
START ’\

START TIMER

o~ TOGGLE | OR o

L‘ > TIMER

FIGURE 28(A) FIGURE 28(B)

STOP o———qy

“& STARTo—

Ah A

A B
AUTO-RESET

TIMERS -
/N
E D

T 1T

FIGURE 28(C)



Sheet 34 of 58 5,355,435

Oct. 11, 1994

U.S. Patent

(67 TINDIA

(V)67 AdNDIA

+—a

l.l'.“lo).t

sSuQOo¢

dNIL S 1NO -2 NIt LNO - I NI - LHV1S-

Suogi

SUoo 1

sSuQg

sug

o

- A_.\YtlJ

0|

T

0 a

=517 AO°0O

,

.

TNO b

ANO'O

TNO'P

0'Z2 ‘JIHN1vH3IdNIL



Sheet 35 of 58 9,355,435

Oct. 11, 1994

U.S. Patent

(&)0g HINDIA

(V)og 44NOI4

JINIL ¢l1NO-SNI-L LNO- L NI- 1HVLS-

SNQ L sny'L snNg'L sSnQ’L SNg'0 Sh9'0 sny’'0 SNZ'0

o o 0

H (=3 -3 Q A ju] -3 a a o & =]
OT .

L) [] ]
{ : .. It 1 1 1 i
T L3 T ¥ T T L}

0'Zc ‘FHNLVHIdINGL

‘NO°O

NO'O

TAO' P



U.S. Patent Oct. 11, 1994 Sheet 36 of 58 5,355,435

TE T

FIGURE 31(A)

: EQ_j&LZ P
E’——Q@—-Tl o
A 4
g ' )
Sm LEARNING WINDOWED)
STOP ! r_ MODULE INVERTER

FIGURE 31(B) / /

116 118




Sheet 37 of 58 9,355,435

Oct. 11, 1994

U.S. Patent

Su su su su
A SuQS O a6
(0)ze TANOL e
v 1o v NI As0
(@)ze TANDIA .
“ AS'S
“ i .50 1S3L-ISAL- ¥ NI o
7(,,K#T\ i hfﬁ D/(,uku o
Y, IS ﬁ Sl
(V)ee a¥non | | | : l | |

NG'S
0'Zc ‘FHN1LvH3IdNTL |



Sheet 38 of 58 5,355,435

Oct. 11, 1994

U.S. Patent

(O)eE TINOIT

()€€ TANDIA

(V)€€ TANDIA

dNIL

mCOON SUQgtL wCOOr c1lno- _.m_h@m d dmco ]
VAN ) . — NG 0
NG S
n NG'G
" - €.1N0 LSTALLSIL ¥ NI~ ' o

M? e uDLL\ \n)ur S /Z e L3 o
.ﬁ& . Wa@ . AV Qﬁ .

| | . |

" _ “ NS'S

0'Zc -3dN1ivd3IdINTL



U.S. Patent Oct. 11, 1994 Sheet 39 of 58 5,355,435

N ’——A[;_T( —o /124

:
i

A [>___o 1 ! LOW HIGH
ST ART§ PASS PASS
________ LOW PASS NETWORK NETWORK| | NETWORK
FIGURE 34(A) FIGURE 34(C)
. N] A
IN 1:!10 IZ:T<>—°
Vi STOP | Y
[> o LOW HIGH
STA RT E PASS PASS
_______ HIGH PASS NETWORK ' NETWORK] | NETWORK

FIGURE 34(B) ~_ FIGURE 34(D)

122 126



Sheet 40 of 58 9,355,435

Oct. 11, 1994

U.S. Patent

(@SE TINDIA

(O)Se TANDI

(4)SE TINDIY

(V)S€ HANDIA

KRREARERRSERARNI
ﬁﬁi i]j | ﬁ_ Lﬂ w me zﬂ” m;ﬁoq\)m o-
ARAVEARANL AN )

a4 \nMrWJ\ Vv (\I\Mj e _\IJ_,.\ 7 <Q

O0'Zc -FHNLVvHIAdNITL



Sheet 41 of 58 5,355,435

Oct. 11, 1994

U.S. Patent

(@9¢ TANDOI

O)og TINDOIT

(q)9¢ HIANDIA

(V)9¢€ HANDIA

JNILL

F NI Ni-°
w:o._. wjm 0 m:@ 0 msv 9] mJN 0 w:O.mum 0
TTTITTTITTIITTITI T
_ | | LNI*LINO= .
7 J\ J\Wf.\ YV <..f.\ 1% J\u v K-HJ_W.J.\ Y <4>m0
R Nz_.m_bou\)m.o-
fﬁjzf 4%\: 1Y
.. N_z_.mkaou\zm.o-

YYYTY

jjml\,xw P

O'Zc -IHN1LVvH3IdNIL



U.S. Patent Oct. 11, 1994 Sheet 42 of 58 5,355,435

CAAA /128 A /130 AA

18ty e
R
ﬁ!Q xS
%"@: B0 j .

FIGURE 37(A) FIGURE 37(B)



Sheet 43 of 58 9,355,435

Oct. 11, 1994

U.S. Patent

JNIL
SUQSE SUOQE Su0Se chON wcom_. wCOOMw wr@m

T H P
) il , I

Gu

RS 0-

(D)8€ ANDIH ‘ nq

vz_ ENI- ZNI- Fz_u>m

AO'O
(8e TANDII
“ « i “ NO'G
7 1NO € 1NO-¢c 1NO-L 1LNO"° .
o ——— ——— A — . e— NGO
& & : T _ )
(V)8€ HANDIA | I ! | ; I !
: _ _ _ — “ “ NG'G

0'Zc ‘F3dNivdIdNTIL



Sheet 44 of 58 5,355,435

Oct. 11, 1994

U.S. Patent

(@6€ TANDIA

D)6€ TINOIL

(@6€ TANDIA

(V)6€ TINOIA

JNIL
sSuov SUQ0¢ SsuUQ9lE suUoct wccw vm/._(%ow .._.D

O/m.O-

i Ezégi .

‘g:2NI21lNo-

NG O-

=A\G 0"

M B
Qﬁg% /q) %ﬁ%ﬁ

=\G 0-

O~ m.Z_m._.DOu
D vZ_J.\.._.DO.u
RiAD RNl

0'4Zc ‘IHNL1VHIdINIL



Sheet 45 of 58 5,355,435

Oct. 11, 1994

U.S. Patent

)0y TANDI

(V)or TINOIL

(oY TANDIL

AL e ae oy
SUQO L WCO“W WCO“Q WC@.V d W.\N_ON d JWCﬁmol
8NI- ZNI- wz_. mz_nww_m
j/\le P—
B W &5&%%.%&%&? )\
8 50 n 9 1N0O-S 1NO- »mw
En‘: % T é@vg g\ N,m T =

0'ZZ ‘FHNLVHIdINGL

NG G



- U.S. Patent Oct. 11, 1994 Sheet 46 of 58 5,355,435

130

T / )

WINDOWED

\[/ INVERTER —1ouT

100
ADAPTATION SINGLE
~ | MODULE CELL
OSCILLATOR
\/ 132
116 /\
N <] ouT
/34
WINDOWED
N \veRTER g out

FIGURE 41



U.S. Patent Oct. 11, 1994 Sheet 47 of 58 5,355,435

VIN

V)
0 0
0 0
0 0
?&:&N‘G o

IN1

IN2

INN

FIGURE 42



U.S. Patent Oct. 11, 1994 Sheet 48 of 58 5,355,435

140

OuTo

<]

i

[ AUTO-{

3

(o))

/_
\|_V

<i>
M

RESET| SP-PP
TIMER|

L‘\_;P
N OUTH

A

{ AUTO-]

!

JAN

RESET| SP-PP
TIMER |

B

OUTN

%a%m

FIGURE 43



U.S. Patent Oct. 11, 1994 Sheet 49 of 58 5,355,435

/\1 43 / 41
COLLECTIO
{ WELL —i OUT
142 < |
T_'% 8 ,
L
[
Vwell



U.S. Patent Oct. 11, 1994 Sheet 50 of 58 5,355,435

=|N A OUT A

%OJ .

Loﬁ

OuUT B

INB

- FIGURE 45



U.S. Patent Oct. 11, 1994 Sheet 51 of 58 5,355,435

A /1 46

L OUT A

] (-
e
—

INB 7@& o
o




U.S. Patent Oct. 11, 1994 Sheet 52 of 58 5,355,435

116 L

L0l U

e L L= ]

0UTH  SERVO

ADAPTATION 1 — l

A Al
)

FIGURE 47



U.S. Patent Oct. 11, 1994 Sheet 53 of 58 5,355,435

154

/

ZOOM

<

| >
>
\

116

/

ADAPTATION
MODULE

SERVO — OuT

150

-
=

PAN-OUT

—
<

/[D]@%@DESEE%EEI—

156
FIGURE 48



U.S. Patent Oct. 11, 1994 Sheet 54 of 58 5,355,435

152

\
//// f

FIGURE 49



U.S. Patent Oct. 11, 1994 Sheet 55 of 58 5,355,435

102 & 104

, \ 180

KNOWLEDGE /\

OSCILLATOR 190
k ) IN

10 T
4 3\ L )
TEMPORAL
KNOWLEDGE “I" ‘
| PROCESSING

OSCILLATOR
\ ) SYSTEM
f \ |

ouT
KNOWLEDGE
OSCILLATOR

FIGURE 50



U.S. Patent Oct. 11, 1994 Sheet 56 of 58 5,355,435

200

W Y Yf 202 220
Y VY.

) . 206
RESPONCE ’{SENSOR CORRELATION ARRA\}/\

TRANSFER
1028104
SYSTEM
KNOWLEDGE /\
‘*—_—i * OSCILLATOR /102 & 104
210
KNOWLEDGE
OSCILLATOR
208, | )
““\0 KNOWLEDGE KNOWLEDGE
OSCILLATOR OSCILLATOR
MULTIPLEXER
AND KNOWLEDGE
CONTROLLER OSCILLATOR
L ) O
O
0
KNOWLEDGE
KNOWLEDGE OSCILLATOR
OSCILLATOR

FIGURE 51



U.S. Patent Oct. 11, 1994

Sheet 57 of 58

5,355,435

\ 4

D 0

e— 10—
— Ts—

FIGURE 52

\ 4
p——



U.S. Patent Oct. 11,1994 Sheet 58 of 58 5,355,435

-

M2 T TS
DI f—

< TD2 -
D3

<— TD4—

FIGURE 53



5,355,435

1

ASYNCHRONOUS TEMPORAL NEURAL
PROCESSING ELEMENT

GOVERNMENT RIGHTS

The U.S. Government has a paid-up license in this
invention and the right in limited circumstances to re-
quire the patent owner to license others on reasonable
terms.

BACKGROUND OF THE INVENTION

The present invention relates to processing elements
in electronic neutral networks and to data processing
systems generatable by combinations of such processing
elements. In particular, the present invention relates to
asynchronous temporal processing elements which sim-
ulate neuron electrophysiology at subcellular levels.
The present invention is useful in solving a wide range
of temporal signal processing problems.

Artificial Neural Networks

Artificial Neural Networks (ANNs) are computa-
tional mechanisms that are structured and act in a man-
ner that is analogous to biological neurons, as is shown
in FIG. 1. In its simplest form, an ANN consists of a
number of Processing Elements (PEs) interconnected
via weighted connections. In ANNs, the processing
elements are typically called ‘“neurons” and the connec-
tions are called “synapses”. The signal lines from the
neurons to synapses are called “axons”, and those from
the synapses to the neurons are called “dendrites”.
These elements are called the “Standard Components™
of the neural system. Each neuron is impinged upon by
numerous synapses, which carry current from neigh-
boring neurons. The input currents are integrated by the
capacitance of the neuron in what is called the “post
synaptic potential” (PSP) until a critical threshold is
reached, at which point an “action potential” (AP) is
generated. In biological systems, the PSP is a continu-
ous in time, continuous in amplitude signal, and the AP
is a continuous in time, discrete in amplitude signal. The
action potential is propagated down the axon to a syn-
apse connecting the neuron with another neuron.

Although these elements can be quite simple, the
large amount of them required to perform practical
tasks makes their implementation complicated. The
most common PE, in which incoming signals are
summed and then convolved with a sigmoidal transfer
function, embodies two basic assumptions. First, it is
assumed that communication between neurons can be
approximated by a slowly-varying scalar value, which
is typically interpreted as the frequency of APs. Sec-
ond, it is assumed that computation within neurons
occurs instantaneously —i.e., that there is no delay
between the arrival of an incoming signal and its effect
on the output. While these assumptions are biologically
unrealistic, they are generally viewed as providing an
adequate approximation that is relatively straightfor-
ward to implement, from which practical computa-
tional studies can be effected.

The present invention takes an alternative approach
of designing a PE that directly models the signal pro-
cessing in biological neurons. A custom asynchronous
temporal VLSI design for the network elements is pro-
vided by the present invention which models the func-
tional and behavioral characteristics of biological neu-
rons. Other characteristics of biological neurons that
are mere artifacts of organic implementations are omit-
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ted. Based on this approach, the literature can be effec-
tively distinguished from the present invention by fo-
cusing on two major areas: implementation methods
and behavioral characteristics.

Implementation Methods

There are three principal implementation methodolo-
gies used in VLSI neural networks. They are Conven-
tional Analog, Digital, and a Hybrid of analog and
digital. The implementation techniques used in the fab-
rication of neuron circuits play a large role in determin-
ing the efficiency of systems of such neurons. Analog
devices have an advantage over digital devices of gen-
erally affording faster processing at a lower hardware
overhead. Analog signals also naturally convey tem-
poral information in the input. However, digital devices
provide greater noise immunity and a building-block
approach to system design. The PEs of the present
invention exploit a hybrid approach in which the inter-
nal computation of the neuron is implemented in analog,
and the extracellular communication can be performed
either asynchronously or synchronously. This approach
is based explicitly on the electrophysiology of spiking
neurons, and gives the best of both worlds: the speed
and low hardware overhead of analog and the noise
immunity and building-block nature of digital compo-
nents.

The following sections identify representative sys-
tems of each implementation method and discuss their
weaknesses.

Conventional Analog

Conventional Analog systems are systems in which
the range of permissible amplitudes of input and output
signals are continuous. Conventional analog systems
follow an axiomatic framework which asserts, among
others, that the transient is linear and can be discounted
as containing no information. However, transient be-
havior can be used in some instances to characterize the
steady state. For example, in a conventional analog
implementation of multiplication, the transient can be
used to characterize how long the system will take to
settle to steady state, or if it will settle. However, the
transient does not contain any information relevant to
the solution of the multiplication problem. Transients
are used to characterize the physical behavior of the
analog system and are not used in the functional behav-
ior of the system. This neglect of the transient can have
a detrimental effect on the processing power of the
analog system, as will be demonstrated later in the sec-
tion on behavioral characteristics, FIGS. 53 and 54.

Analog circuits are commonly used because of their
speed and small implementation size. Analog wave-
forms also provide a natural means for modeling biolog-
ical signals such as PSPs. Analog circuits have a fairly
constant power dissipation due to the fixed current
biases required to keep the devices in the proper opera-
tion mode. This is advantage over digital circuits which
have power surges due to circuit switching, but utilizes
more power than the PE of the present invention. The
PE of the present invention is a data-driven device that
is only active when there is data present. When data is
not present, the system is at rest, therefore minimizing
the overall power dissipation of the system.

In M. C. Maher, S. P. Deweertyh, M. A. Mahowald,
C. A. Mead, “Implementing Neural Architectures
Using Analog VLSI Circuits”, IEEE Transactions on
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Circuits and Systems, Vol. 36, No. 5, May 1989, pp.

643-652, analog VLSI circuits are developed that
model biological sensory systems. An example system is

described which models the first stages of retinal pro-

cessing. In particular, the model is concerned with the 5
processing that occurs in the receptors and the outer

plexiform layer of the visual system. Since these aspects
of the visual system are at a much higher level than a
basic neuron, the model abstracts away much of what is

included in the present invention. For example, the 10

Mabher et al. system does not model synapses, axons,
somas, or dendrites explicitly: the effects of these com-
plex components are simply assumed to be subsumed

within the overall behavior of their neuron. The neuron

itself is again abstracted away from the actual biology to 15

include only a means of producing action potentials, not
modeling pre or post synaptic potentials. Similar work
was reported in C. Mead and M. Mahowald, “A silicon
model of early visual processing,” Neural Networks,
Vol. 1, no. 1, pp. 91-97, 1988. Other work directed by
C. Mead, reported in John Lazzaro and C. Mead, “A

20

silicon model of auditory localization,” Neural Compu-

tation, Vol. 1, no. 1, pp. 47-57, 1989, applies the same
techniques mentioned above to modeling the auditory 25
This work is relevant to the present invention because
of the leading role C. Mead has played in the develop-
ment of analog VLSI systems for modeling biology.

However, the level at which the biological systems are 30

modeled are much more abstract than that of the pres-

ent invention. Thus, many of the behaviors presented in
the Examples section could not be accomplished using

Mead’s methods.

Digital 35
There has been interest in developing digital neural
network systems and processing elements due to the
availability of development tools for digital circuits and

the expertise to use them. Digital neural processing 4

elements also have the advantage of conforming to

automated testing procedures, which analog systems

lack. Because of the difficulty in implementing the in-

herently analog aspects of biological neurons, many
digital neural processing elements implement instead
the idealized mathematical expression of the multiplica-
tion of synapse weight by the activation value produced
in the axon hillock. These circuits do not have particu-
lar circuitry for the standard components, but rather
implement a simple form of microprocessor, complete
with Arithmetic Logic Units (ALUs) and on-board

RAM memory. There are many networks that conform

to the above description, such as:

M. S. Melton, T. Phan, D. S. Reeves, and D. E. Van
den Bout, “The TIn-MANN VLSI Chip”, IEEE
Transactions on Neural Nets, Vol 3, no. 3, 1992,
pp- 375-384.

N. Mauduit, M. Duranton, J. Gobert, and J. Sirat,
“Lneuro 1.0: A Piece of Hardware LEGO for
Building Neural Network Systems”, IEEE Trans- 60
actions on Neural Nets, Vol 3, no. 3, 1992, pp.
414-422.

D. Hammerstrom, “A VLSI Architecture for High-
Performance, Low-Cost, On-chip Learning”, Pro-
ceedings of the International Joint Conference on 65
Neural Networks. Vol. II, June 1990, pp. 537-544.

These implementations all have the same problems,

namely:

45

50

55
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1. Standard components of the neural element are not
explicitly modeled and therefore the resulting sys-
tems will not have an adequate range of behaviors.

2. An example of the point number one is in the
weighting of the synapses. Synapses have time-
varying weights that are critically dependent on
the inputs that have passed over them previously.
In digital circuits, synapse weights are modeled as
a fixed value that may be updated at various inter-
vals. However, because the updates of the synapse
weights occur at clocked cycles, their response
cannot be to the incoming data, but only to the
system clock.

3. Because the circuits are digital, temporal aspects
inherent in biological neural networks are either
missed or shifted (see Continuous/Asynchronous
vs. Discrete/Synchronous below). Due to this, the
output of these systems will not preserve what in
many cases are critically important aspects of input
signals.

4. Digital circuits are often very large due to the size
of common components such as RAM and multi-
pliers. This generally results in a lower density of
PEs per square centimeter on an integrated circuit.

5. Digitally implemented chips will generally require
much more power than an analog system, due to its
larger size, and because in digital circuits, all
switches must switch at the same time.

6. Because numeric information must be stored as
digital bit steams with limited resolution, there are
a number of analog values that cannot be realized.
This limitation may prevent an adequate solution
for a given problem from being found.

Hybrid Analog/Digital

Hybrid Analog/Digital systems are proposed to cir-
cumvent the problems associated with either analog or
digital only implementations of VLSI neural networks.
The idea is to compensate for the weaknesses of one
technology with the strengths of the other. For exam-
ple, communication with analog signals has the disad-
vantage of being susceptible to noise. This can be over-
come by using digital communication techniques.

One system that uses this technique is W. A. J. Wal-
ler, D. L. Bisset, and P. M. Daniell, “An Analogue
Neuron Suitable for a Data Frame Architecture”. in
VLSI for Artificial Intelligence and Neural Networks, J.
G. Delgado-Frias and W. R. Moore, eds., Plemum
Press, New York, 1991. The synapse weights are stored
digitally, then are converted via a Digital-to-Analog
converter to an analog vatue. This is then passed
through a synapse, with converts the analog value into
a number of pulses. These pulses are then counted by
digital circuitry, and produced as output. While this is
clearly a design motivated by engineering consider-
ations, it does illustrate the types of integration that can
be made uvsing a hybrid approach.

Other types of hybrid systems generally attempt to
perform internal computations in analog and external
communication digitally. However, in the examples
given above, which are prototypical of the field, this
amounts to implementing digital circuits in analog. As
such, these methods will have many of the same prob-
lems as conventional analog and digital circuits.

Biological vs. Non-Biological

A principal motivation behind the design of the pres-
ent invention was to realistically model a biological
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neuron without sacrificing speed and computational
power. Biological realism in neural modeling is moti-
vated both by the goal of understanding the behavior of
biological nervous systems, and by the realization that
biological neurons are complex, versatile signal process-
ing devices that are evidently well-suited to a very large
variety of computational tasks. Neurons are hybrid
analog/discrete devices, in which inputs are processed
by the time-dependent convolution of relatively slowly-
varying post synaptic potentials, and outputs are trans-
mitted over long distances by fast, relatively loss-free
action potentials. This integration of continuous, Asyn-
chronous analog input processing with discrete, pulse-
encoded communication allows neurons to make use of
time and phase difference information between signals
arriving in real time to represent both temporal and
spatial information. It also allows neurons to exchange
information in times much smaller than their internal
processing times, hence breaking the communication
bottleneck that hobbles many massively parallel sys-
tems. The combination of high-speed, discrete commu-
nication and versatile analog computation renders neu-
rons, as is shown in the Examples section, ideal for
many time-dependent signal processing applications.

Accordingly, the conceptual basis for the present
invention is the functional homology between a volt-
age-gated ion channel—the active device of electro-
physiology—and a single transistor. The choice of
channels as the basis of the model allows the achieve-
ment of robust performance with a smaller number of
components than models based on the analogy between
neurons and operational amplifiers. Where there are
:many biological aspects of neurons that are important
in developing robust ANNS, there are also some aspects
that are present only because of the neuron’s implemen-
tation in organic matter. One way the present invention
differs from biological neurons is in its generality. The
present invention is intended to model an abstracted,
generic neuron with action potentials and chemical
synapses, not a specific neuron type. Biological neurons
are generally specialized for particular functions and
synaptic environments; the present PE, in contrast,
develops a general model that can be specialized as
needed. Another artifact of the implementation of bio-
logical neurons in organic matter is their voltage re-
quirements and operating speeds. Biological neurons
work on the millivolt voltage and the millisecond time
ranges. The preferred embodiment of the present PE is
scaled to the voltage and time domains most naturally
implemented in silicon: 0-5 volts and nanoseconds to
microseconds. This scaling allows development of ap-
plications for high-speed TSPs that cannot be addressed
by models such as Mead’s, that work on the millisec-
onds to seconds time scale of biological neurons.

Time-Dependent vs. Time-Independent

Many ANNs are based on the assumption that each
input vector is independent of other inputs, and the job
of the neural network is to extract patterns within the
input vector that are sufficient to characterize it. For
problems of this type, which amounts to spatial pattern
recognition, a network that assumes time independence
will provide acceptable performance. However, there is
a large class of problems where the input vectors are
not independent and the network must process the vec-
tor with respect to its temporal characteristics and rela-
tion to previous vectors. Network architectures that
assume time independence are typically unwieldy when
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applied to a temporal problem, and require additional
inputs, neuron states, and/or feedback structures. Al-
though temporal characteristics can be converted into
activation levels, this is difficult to do without losing
information that is critical to solving the problem effi-
ciently. Networks that assume time dependence have
the advantage of being able to handle both time depen-
dent and time independent data.

Continuous/Asynchronous vs. Discrete/Synchronous

Many problems amenable to solution by ANNs re-
quire that the temporal aspects of the system input to be
taken into account. To accomplish temporal depen-
dency, the implemented systems must be continuous
and asynchronous. Both of these conditions are re-
quired because if a system is discrete or synchronous,
errors will be introduced into the system by missing
signals in the digitization process or by shifting signals
in both the digitization and synchronizing processes.
FIG. 52 illustrates the information losses caused by
digitizing a pulse stream representing a continuous input
signal and by enforcing synchronicity on the processing
elements. At the first input spike, a low amplitude, long
duration PSP begins in the continuous/asynchronous
{CA) case which is only registrable at time T1 in the
discrete/Synchronous (DS) case. When the second
spike arrives, the amount of current that it adds to the
PSI in the CA case pushes it over the threshold Vth,
causing an axon hillock to fire at time T2. Voltages V1
and V2 show two additional possibilities for the PSPs
after the second spike. With voltage V1, the current
level at the time of the next digitization will be lower
than the threshold, and therefore the digitizing system
will have missed the axon hillock firing altogether.
With voltage V2, the current level remains at a high
enough level so that the digitization will recognize the
current as being enabled. It could then command the
axon hillock to fire at time T3. However, important
temporal properties of the input signals have been
changed by delaying the order to fire by Td. This delay
could be as much as the digitizing window Ts.

A similar situation arises in conventional analog cir-
cuits. FIG. 53 shows a PSP which we interpret to be the
same for the CA circuit as for the conventional analog
circuit. Although the conventional analog circuit can
receive as input the continuous-time input signal, it
imposes an implicit digitization scheme by requiring the
resulting output PSP, V1, to be in a “steady-state” be-
havior before it can be used by other components. An
element of a conventional analog circuit will be in
steady-state when the increase or decrease in the level
or frequency of the output falls below a set tolerance.
Until that time, the element is said to be in “transient”
behavior, which is ignored. The first input AP in FIG.
53 has a leading edge at time T1 and a falling edge at
time T2. The rise time of the low-amplitude, long-dura-
tion PSP V1 contained in the time interval TD1 could
be considered a transient, with time TD2 being an inter-
mediate steady state. When the second input AP arrives
it generates a PSP that adds with the previous PSP. If
the resulting combined PSP follows the solid line, the
period from T3 until the PSP completely dissipates is
considered a transient period with rest as the steady-
state value. It is possible to view the entire period from
T1 until the dissipation of the PSP as transient, if TD2
is viewed as transient. If the PSP follows V2, the period
TD3 is a transient, with V2 as the steady state. If the
PSP follows V1 the period TD4 is a transient, with V1
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as the steady-state value. In any of these cases, the time
delay between AP1 and AP2, as well as the transient
PSP amplitude, is assumed to contain no information.

As has been mentioned, and will be explicitly demon-
strated in the Examples section, information can be
carried in the transient signals based on the delay be-
tween the input pulses. Although these pulses can cause
significant changes to the PSP, they can be considered
to be in the transient region of a conventional analog
circuit and will be ignored by such a circuit. In conven-
tional analog circuits, where all computation is carried
out by level-to-level transformations, no information
about the temporal characteristics of the input signals
can be used to distinguish the input.

Triggerable vs. Non-Triggerable

Due to the fine granularity of the temporal differ-
ences between incoming APs to a PE, the PE must be a
triggering type device in order to maintain the temporal
characteristics of the input. A triggering device has a
threshold defined such that whenever the threshold is
exceeded (e.g., by current level or frequency), the de-
vice is turned on. The axon hillocks of the present in-
vention are an example of a triggering device. When the
potential of the soma passes the threshold of an axon
hillock, the hillock fires an AP.

By setting the threshold such that the device will
always be active, any triggerable device can be made
into a non-triggerable device. There are some applica-
tions where this may be desirable, but to do so will
cause information about the temporal characteristics of
the input to be lost, or at least require a significant
amount of computation to recover.

Non-linear vs. Linear

Many devices in the present invention have non-lin-
ear dynamics which arise because of the method used to
implement the PE. Allowing the PE to have non-linear
components, especiailly a non-linear transform from
APs to PSPs, allows the PE to solve more difficult
problems that it could if it were linear. This is because
non-linear elements are able to solve non-periodic dy-
namical systems, while linear elements are able to solve
only periodic dynamical systems. _

Allowing the circuitry to contain subsystems with
non-linear dynamical properties also reduces the power
and size requirements of the circuits. Since all transis-
tors have inherent non-linear properties, no device can
be made completely linear. Typical implementation
methods utilize additional circuitry to extend system
linearity. The additional circuitry increases the power
consumption and the space required to implement the
complete circuit. ‘

The approach taken with the present invention is to
allow and utilize the entire non-linear range of the de-
vices obtainable in the implementation medium; i.e.,
silicon, GaAs, etc.

Accordingly, the PE of the present invention pro-
vides an ability to process asynchronous temporal infor-
mation not heretofore available.

SUMMARY OF THE INVENTION

The present invention is of a neural network process-
ing element, a plurality of which comprise a neural
network, comprising: one or more chemical synapse
simulators; a neuron soma simulator; one or more den-
drite simulators operably connecting a chemical syn-
apse simulator to the neuron soma simulator; an axon
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simulator; an axon hillock simulator operably connect-
ing the neuron soma simulator to the axon simulator;
one or more asynchronous signal receptors for receiv-
ing asynchronous signals and for providing the signals
to the chemical synapse simulators; and one or more
asynchronous signal transmitters for sending asynchro-
nous signals from the means for simulating an axon. In
the preferred embodiment, the chemical synapse simu-
lators comprise excitatory, inhibitory, and shunting
synapse simulators, which simulate both presynaptic
and post synaptic regions. Preferably, the processing
element includes one or more bias adaptation networks
for dynamically controlling one or more operational
parameters of the axon hillock simulator, such as thre-
shold/delay level, action potential pulsewidth level,
and refractory period, or one or more operational pa-
rameters of the chemical synapse simulators, such as
current amplitude, current duration, and delay period.
The asynchronous signal transmitters preferably send
asynchronous pulsed signals. The processing element
additionally comprises an asynchronous reset for re-
turning the processing element to its initial conditions.

The present invention is also of an apparatus for solv-
ing temporal signal processing problems comprising a
plurality of asynchronous temporal neural processing
elements, each of the neural processing elements com-
prising a resistive/capacitive network for simulating a
neuron soma. In the preferred embodiment, the neural
processing elements additionally comprises an axon
hillock simulator (preferably a voltage-controlled oscil-
lator) which monitors the voltage level of the resistive/-
capacitive network means. The axon hillock simulator
is biased by one or more DC bias voltages which con-
trol threshold/delay level, action potential pulsewidth
level, and/or refractory period. The neural processing
elements additionally comprise at least one chemical
synapse simulator (excitatory, inhibitory, and/or shunt-
ing) which draws or supplies current from or to the
resistive/capacitive network. The chemical synapse
simulator is biased by one or more DC bias voltages
which control current amplitude, current duration, and
delay period.

The invention is also of a bias adaptation network for
controlling a biased parameter of a slave neural network
processing element, comprising: one or more receptors
of one or more signals from one or more master neural
network processing elements; a determinator of the
present location of a bias level corresponding to the
voltage biased parameter of the slave neural network
element on the bias/parameter nonlinearity; and a bias
modifying element for adjusting the bias level by a delta
amount dependent on the location on the bias/parame-
ter nonlinearity, the adjustment being asynchronously
time dependent with respect to the one or more signals
from the one or more master neural network processing
elements. The bias adaptation network preferably addi-
tionally comprises oscillation compensation means.

Additionally, the invention is of a general purpose
neural network processing element for receiving a plu-
rality of input signals from a plurality of sources com-
prising: a neuron soma simulator; an axon hillock simu-
lator which monitors a potential of the neuron soma
simulator; and a plurality of receptors of one of the
input signals, each of the receptors comprising an excit-
atory synapse simulator which provides energy to the
neuron soma simulator and an inhibitory synapse simu-
lator which draws energy from the neuron soma simula-
tor. In the preferred embodiment, each of the receptors
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additionally comprises a shunting synapse simulator
which causes the neuron soma simulator to return to its
resting potential. Each of the receptors is independently
disableable and each of the synapse simulators is as well.
Furthermore, each of the receptors and the axon hillock
simulator are independently biasable.

The present invention is also of a neural network
processing element comprising a chemical synapse sim-
ulator and a modifying element for adjustably control-
ling the processing delay period of the chemical synapse
simulator to a delay period between a maximum of at
least approximately one second and a minimum of at
least approximately one nanosecond.

The invention is also directed to a neural network
processing element comprising processors of asynchro-
nous signals and asynchronous data-driven controllers
for adjusting the processing delay period of the asyn-
chronous means for processing signals. In the preferred
embodiment, the controllers can produce a delay period
between a maximum of at least approximately one sec-
ond and a minimum of at least approximately one nano-
second.

The invention is additionally directed to a neural
network processing element implemented in any me-
dium, the processing element comprising asynchronous
signal processors and having a maximum processing
speed approximately equal to the maximum physical
signal transmission speed of the medium. In the pre-
ferred embodiment, the processing element has a maxi-
mum processing resolution of at least approximately
two orders of magnitude lower than the maximum
physical signal transmission speed of the medium.

The invention is also of a coupled-grid retinal proces-
sor comprising: an array of charge coupled devices for
detecting photons and for generating signals upon de-
tection of photons; and a multi-layered network of asyn-
chronous temporal neural network processing elements
for processing said signals.

The invention is further directed to a method of pro-
cessing asynchronous signals comprising the steps of:
receiving one or more asynchronous action potential
signals; providing the action potential signals to one or
more chemical synapse simulators; modifying the
amount of energy stored in a neuron soma simulator;
and sending an asynchronous action potential signal
from an axon hillock simulator.

A primary object of the present invention is to pro-
vide a neural network processing element capable of
both receiving and sending asynchronous signals.

An additional object of the present invention is to
provide a neural network processing element useful in
solving temporal signal processing problems.

Another object of the present invention is to provide
a neural network processing element which simulates
neuron activity at a subcellular level, including simula-
tion of three types of chemical synapse (excitatory,
inhibitory, and shunting); dendrites; soma; axon hillock;
and axon.

Yet another object of the present invention is to pro-
vide dynamically varying bias control of signal ampli-
tude, pulsewidth, duration, refractory period, and de-
lay.

Still another object of the present invention is to
provide an adaptation module for neural network pro-
cessing elements which alters operating characteristics
of the processing elements based upon system state.

An additional object of the present invention is to
provide a general purpose neural network processing
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element having a plurality of synapse triads, each syn-
apse being independently disableable, from arrays of
which general purpose neural networks may be con-
structed which permit emulation of any circuitry con-
structible from a plurality of neural network processing
elements of the invention.

A primary advantage of the present invention is that
the processing element is operable at speeds ranging
from a nanosecond (when implemented in silicon cir-
cuitry) to essentially infinity (one second or more).

Another advantage of the present invention is that
the processing element may be implemented in media
other than silicon or using signals other than electrical
and operate at a maximum speed corresponding to the
physical transmission speed of the signals through the
implementation medium.

An additional advantage of the present invention is
that the processing resolution of the circuitry may be up
to two orders of magnitude finer than the physical
transmission speed of the signals through the implemen-
tation medium.

Still another advantage of the present invention is
that small and fast analog circuitry may be rapidly de-
signed to handle a wide range of temporal signal pro-
cessing problems, including: continuous windowed
logic; single and multiple bit pulse oscillation; general
purpose cognition and memory; timing; phase shift de-
modulation and quantification; filtering; winner-take-all
problems; and audio and video processing.

Yet another advantage of the present invention is that
a means for asynchronous reset of a processing element
is provided.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1is an illustration of the types of signals gener-
ated by a network of typical neurons;

FIG. 2 is an illustration of a typical neuron;

FIG. 3 is a graph of typical waveforms of an excit-
atory post synaptic potential and an inhibitory post
synaptic potential in a typical neuron;

FIG. 4 is a graph of typical spikes generated by the
axon hillock of a typical neuron;

FIG. 5 is an illustration of a typical chemical synapse;

FIG: 6 is a functional diagram of the processing ele-
ment of the present invention;

FIG. 7 is a graph of a simulation of the output gener-
ated by the processing element by simuitaneously firing
a shunting synapse and excitatory synapse on one node
and a shunting synapse and inhibitory synapse on an-
other node;

FIG. 8 is a graph of a simulation of the output gener-
ated by a processing element having a shunting synapse
and excitatory and inhibitory synapses with built-in
delay;.

FIG. 9 is a schematic of the preferred processing
element of the present invention;

FIG. 10 is a graph of a simulation of excitatory post
synoptic potentials generated by the processing ele-
ment;

FIG. 11 is a graph of a simulation of excitatory post
synaptic potentials generated by the processing ele-
ment;

FIG. 12 is a graph of a simulation of excitatory post
synaptic potentials generated by the processing ele-
ment;

FIG. 13 is a graph of a simulation of excitatory post
synaptic potentials generated by the processing ele-
ment;
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FIG. 14 is a graph of a simulation of excitatory post
synaptic potentials generated by the processing ele-
ment;

FIG. 15 is a graph of the typical non-linearity repre-
senting the relationship between a DC bias voltage and
the preferred processing element parameter it controls;

FIG. 16 is a schematic of three adaptation networks
of the present invention;

FIG. 17 is a graph of the simulated behavior of the
adaptation network;

FIG. 18 is a graph of the simulated behavior of the
adaptation network;

FIG. 19 is a taxonomy of temporal signal processing
problems;

FIG. 20 is a block diagram of the preferred compo-
nents using in constructing networks of the processing
element;

FIG. 21 is a block diagram of continuous windowed
logic systems employing the processing clement;

FIG. 22 is a graph of the simulated behavior of the
exclusive-or network of FIG. 21;

FIG. 23 is a block diagram of oscillatory systems
employing the processing element;

FIG. 24 is a graph of the simulated behavior of the
pulse oscillator network of FIG. 23;

FIG. 25 is a graph of the simulated behavior of the
four bit oscillator network of FIG. 23;

FIG. 26 is a block diagram of an uncoupled data
oscillator employing the processing element;

FIG. 27 is a block diagram of a coupled data oscilla-
tor employing the processing element;

FIG. 28 a block diagram of timing systems employing
the processing element;

FIG. 29 is a graph of the simulated behavior of the
auto-reset timer network of FIG. 28 having a short
duration between output action potentials;

FIG. 30 is a graph of the simulated behavior of the
auto-reset timer network of FIG. 28 having a long dura-
tion between output action potentials;

FIG. 31 is a block diagram of phase relation systems
employing the processing element;

FIG. 32 is a graph of the simulated behavior of the
phase shift demodulator of FIG. 31 when presented
with an acceptable phase shift;

FIG. 33 is a graph of the simulated behavior of the
phase shift demodulator of FIG. 31 when, presented
with a non-acceptable phase shift;

FIG. 34 is a block diagram of filiering systems em-
ploying the processing element;

FIG. 35 is a graph of the simulated behavior of the
high-pass filter of FIG. 34 when presented with an
acceptably high frequency input stream;

FIG. 36 is a graph of the simulated behavior of the
high-pass filter of FIG. 34 when not presented with an
acceptably high frequency input stream;

FIG. 37 is a block diagram of winner-take-all systems
employing the processing element;

FIG. 38 is a graph of the simulated behavior of the
temporal winner-take-all network of FIG. 37,

FIG. 39 is a graph of the simulated behavior of the
single-layer MAXfNET network of FIG. 37;

FIG. 40 is a graph of the simulated behavior of the
general temporal winner-take-all network of FIG. 37;

FIG. 41 is a block diagram of an extrema detector
employing the processing element;

FIG. 42 is a block diagram of a serial pulse stream to
parallel pulse stream converter and a parallel pulse
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stream to serial pulse stream converter employing the
processing element;

FIG. 43 is a block diagram of serial digital to parallel
pulse stream converter employing the processing ele-
ment;

FIG. 44 is a block diagram of an electromagnetic
radiation to pulse stream converter employing the pro-
cessing element;

FIG. 45 is a block diagram of a spatial feature extrac-
tor employing the processing element;

FIG. 46 is a block diagram of a temporal feature
extractor employing the processing element;

FIG. 47 is a block diagram of an X-Y position con-
troller employing the processing element;

FIG. 48 is a block diagram of a Z position controlier
employing the processing element;

FIG. 49 is a block diagram of a retinal processor
employing the processing element;

FIG. 50 is a block diagram of a general programming
system employing the processing element;

FIG. 51 is a block diagram of a general cognition
machine employing the processing element;

FIG. 52 Is a signal diagram demonstrating disadvan-
tages of conventional digital signal processing; and

FIG. 53 is a signal diagram demonstrating disadvan-
tages of conventional analog signal processing.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

The present invention is of an asynchronous temporal
neural processing element (PE) closely modeling the
sub-cellular biology of neurons which have chemical
synapses. The PE is useful in solving a wide array of
problems in the class of temporal signal processing
problems, which class subsumes the class of nontem-
poral signal processing problems. The present invention
is also of data processing system components fabricata-
ble from the PE.

To understand the present invention, it is important
to have a firm grasp of the anatomy and electrophysiol-
ogy of true neurons. FIG. 2 shows the seven regions of
interest in the neuron: the excitatory post synaptic re-
gion 10; the inhibitory post synaptic region 12; the den-
dritic tree 14; the cell body (Soma) 16; the action poten-
tial initiation zone (Axon Hillock) 18; the axom and
collaterals 20; and the presynaptic region 22.

Computation within the cell is by weighted convolu-
tion of Post Synaptic Potentials (PSPs). FIG. 3 shows
both an Excitatory and an Inhibitory PSP, (EPSP and
IPSP, respectively). Communication between celis is
via: streams of impulse-like Action Potentials (APs). A
typical stream of APs can be seen in FIG. 4. Notice the
APs ride atop the convolved EPSPs and IPSPs, and are
referenced from a threshold voltage. In FIG. 3 and
FIG. 4, the voltage and time scales are for biological
systems.

The three waveforms (APs, EPSPs, and IPSPs)
occur as a result of changes in the conductances of ion
channels through the cell membrane. The flow of four
ions (Na+, K+, Cl—, and Ca2+) into and out of the cell
due to these conductance changes causes the membrane
to become either hyperpolarized or depolarized. Hyper-
polarization occurs when the inside of the cell becomes
negative with respect to the outside, whereas depolar-
ization is the movement of the membrane potential
towards zero, causing the interior of the cell to become
positive with respect to the outside. When the mem-
brane potential of the action potential initiation zone
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reaches the threshold value in the depolarization region,
an AP is fired.

An expanded view of a synapse showing the sodium,
potassium, and chlorine channels in the Post Synaptic
Region (PSR) and the calcium channels in the presy-
naptic region can be seen in FIG. 5. The intracellular
and extracellular concentrations and membrane perme-
ability of the ions is given in Table 1. Notice that the
concentrations of the Na+, Ca?+, and Cl—ions are
higher out, side the cell and the K+ion concentration is
higher inside the cell. This concentration gradient is
maintained by the ion pump system in the membrane.
The values shown in Table 1 are for a cell in the resting
state.

In the absence of signals, the post synaptic side of the
membrane is at the resting potential, which is the mem-
brane potential at which there is no flow of ions across
the membrane, approximately —70 mV, the Nernst
potential of chlorine ions. This potential is a function of
the equilibrium points of the Na+, K+, and Cl—ions,
where equilibrium refers to the balancing of the poten-
tial and concentration gradients across the membrane.
The resting potential of the membrane can be found
using the Goldman or constant field equation
where

K,, Na,, and Cl, refer to the ion concentrations out-

side of cell,

K, Na;, and Cl; refer to the ion concentrations inside

the cell,

pK> pNa» and pcyrefer to the membrane permeability of

the ions.

Using the values from Table 1 and Equation 1 gives a
resting membrane potential of —68.0 mV. The maxi-
mum membrane potential occurs when an action poten-
tial has been fired. This potential can also be caiculated
using Equation 1 and Table 1 (Vy4x=30 mV). Notice
the only parameter that changes in Equation 1 is the
membrane permeability of sodium, which is five hun-
dred times larger during the generation of an AP. Note:
these values given in Table 1 are only approximations
and the values are not constant. Measured values show
the maximum membrane potential during an AP to be
approximately 50 to 60 mV.

As an AP enters the presynaptic region from an axon
collateral it causes the conductance of the Ca2+ chan-
nels to increase, allowing calcium ions to flow into the
presynaptic terminal, due to the potential gradient
across the presynaptic region membrane and the con-
centration gradient of calcium. The amount of calcium
influx determines the neurotransmitter released at the
junction.

(6))
Ko + (pNa/p8)Nao + (pci/px) Cli
K; + (pNa/PE)Na; + (pci/pk) Clo

Vs = 58log (

TABLE 1

Ton Concentrations and Membrane Permeabilities
Membrane Permeability

Ion Concentration

Extracellular  Intracellular Rest AP
Na+t 117 30 0.03 15
K+t 3 90 1 1
Ca2+ 10 0.3E—% 0 0
Cl— 120 4 0.1 0.1
mM Relative to K+

Neurotransmitter receptors on the PSR side of the
junction receive the chemical signal from the presynap-
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tic region. The bonding of a neurotransmitter and a
receptor causes the receptor to induce a chemical reac-
tion which alters the conductance of the ion channels. If
the particular PSR is excitatory the receptors open the
Na+channels allowing sodium ions to flow into the
PSR in response to the concentration gradient. This
positive ionic current flow causes a change in the mem-
brane potential of the PSR in the form of an EPSP. In
an inhibitory PSR the receptors open the K+ channels
allowing an outflux of potassium ions in response to the
concentration gradient, which results in an IPSP. The
PSP travels along the dendrite.

A dendrite can be thought of as a lossy transmission
line, which delays and attenuates the PSP. Each seg-
ment of the dendrite has its own characteristic impe-
dance. The dendrites join together to form the dendritic
tree. The convolution of the PSPs is performed at the
nodes of the tree as the signals propagate towards the
soma. The direction of current flow is due to the thick-
enning of the dendrite as it approaches the soma, which
lowers its RC time constant. The convolved signal
representing the activity of the entire dendritic tree
enters the cell body, causing the membrane to become
either depolarized or hyperpolarized.

The action potential initiation zone monitors the
soma potential to determine the state of the cell. If the
cell membrane becomes depolarized to the threshold
voltage, the sodium channels in the hillock open com-
pletely, causing a high influx of Na+ ions. This inward
surge of positive ions pulls the membrane potential
towards the Nernst potential for sodium, approximately
480 mV, generating the rising edge of an AP. At this
point the potassium channels open, which prevents the
membrane potential from reaching damaging levels.
The K+ ions are pushed out of the cell by both the
potential and concentration gradients, thus causing the
falling edge of the AP. There is a minimum period of
time needed for the cell to recover from the generation
of an AP, called the refractory period. If the soma po-
tential remains above the threshold value for this refrac-
tory period, another AP is fired. The length of the re-
fractory period is inversely proportional to the soma
activity. The AP streams move along the lossless axon
and collaterals to the presynaptic regions on the den-
dritic trees of neighboring cells.

The number of ions transported across the membrane
in the generation of an AP is minute with respect to the
total number of ions in and around the cell, therefore
the concentration ratios and thus the behavior of the
cell remain unchanged after each AP firing.

As an AP enters the presynaptic region from an axon
collateral it causes the conductance of the Ca2+ chan-
nels in the cell membrane to increase, allowing calcium
ions to flow into the presynaptic terminal, due to the
potential gradient across the presynaptic region mem-
brane and the concentration gradient of calcium. The
amount of calcium influx determines the neurotransmit-
ter released at the junction. Neurotransmitter receptors

60 on the post synaptic side of the junction receive the

65

chemical signal from the presynaptic region. The bond-
ing of a neurotransmitter and a receptor causes the
receptor to induce a chemical reaction which alters the
conductance of the ion channels. If the particular post
synaptic region is excitatory, the receptors open the
Na+ channels allowing sodium ions to flow into the
post synaptic region in response to the concentration
gradient. This positive ionic current flow causes a
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change in the membrane Potential of the post synaptic
region in the form of an Excitatory Post Synaptic Po-
tential (EPSP). In an inhibitory synapse the receptors
open the K+ channels allowing an outflux of potassium
ions in response to the concentration gradient, which
results in an Inhibitory Post Synaptic Potential (IPSP).

Processing Element Simulation of Neuron
Electrophysiology

Since electronic current in VLSI circuitry operates
much faster than ionic current in neurons, the timing in
the present invention has been linearly scaled to take
advantage of this speed while maintaining the relative
shapes and timing of the signals. VLSI circuitry is much
more reliable when it operates in the saturation region
than when it operates in the subthreshold region; there-
fore the voltage scale has also been scaled from the
millivoit range of neural signals to the volt range of
saturated MOS devices. The operating range of a typi-
cal neuron is roughly —80 mV, just below the Nernst
potential for K+ ions, to roughly +60 mV, just above
the Nernst potential of Na+ions. This range has been
scaled linearly to the 0—35 volt range of the MOS de-
vices. This maps the resting potential of approximately
—60 mV to 1 volt and the typical threshold voltage of
—40 mV to 1.7 volts. The operating range for temporal
relations in neurons, which is in the ms range, has also
been scaled to the ns range of the VLSI devices (ap-
proximately 1 ms per 10 ns in the present current PE).

FIG. 6 shows a functional diagram of the PE of the
present invention. Three types of chemical synapse
models provide a current to or draw current from a
summing node referred to as the soma (cell body) in
response to an Action Potential (AP) at their input.
These currents are time-varying waveforms and are
referred to as Post Synaptic Potentials (PSPs). Excit-
atory PSPs (EPSPs) provide current to the soma, Inhib-

. itory PSPs (IPSPs) draw current from the soma, and
Shunting PSPs (SPSPs) maintain the cell at the resting
potential and can either supply or draw current depend-
ing on the current state of the soma. EPSPs, IPSPs, and
SPSPs are produced by excitatory, inhibitory, and
shunting synapse circuitry, respectively. There are
three adjustable parameters of the PSPs: amplitude,
time-duration, and delay, which are controlled with DC
bias voltages.

The soma node is modeled as a Resistive/Capacitive
(RC) network with a membrane resting potential source
(see FIG. 6). The time constant of the RC network sets
the upper bound on the analog computation rate of a
given PE. The processing speed of a PE is determined
by the DC biases of that PE.

The soma activity is monitored by the axon hillock
which generates AP streams that convey the current
state of the PE. These AP streams feed to the synapses
of neighboring PEs and possibly to synapses connected
to the PE’s own soma node. The hillock is a threshold-
ing device with a hard threshold below which the out-
put is inactive. Above the hard threshold is a time-
dependent threshold region, where the delay before AP
generation is proportional to the exceedance of the hard
threshold. In this region the PE output frequency is a
function of the soma voltage level, i.e., the hillock func-
tions as a nonlinear Voltage-Controlled Oscillator
(VCO). As the delay is reduced to its lower limit, which
is the minimum propagation delay through the hillock
circuitry, the input activity approaches the instanta-
neous threshold level (roughly one volt above the hard
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threshold). There are also three adjustable parameters
of the axon hillock behavior: threshold/delay level, AP
pulsewidth, and the separation between APs ( the “re-
fractory period”).

In both the synapses and axon hillock, the parameter
variations with respect to the DC biases are very non-
linear, and offer an extremely wide dynamic range of
behavior. Table 2 summarizes the dynamic range of the
bias/parameter relationships of the complete PE. The
Bias/Parameter relationships are very nonlinear, but
offer a wide range of behavior. Practical infinity repre-
sents a duration long enough to be considered infinite
with respect to the processing speed of the system.

FIGS. 7 and 8 illustrate typical APs, EPSPs, IPSPs,
and SPSPs produced by the PE of the present inven-
tion. FIG. 7 is the output generated by simultaneously
firing a shunting synapse with an excitatory synapse on
one node and a shunting synapse and an inhibitory syn-
apse on a separate node. The resulting behavior appears
as a delay in the generation of the EPSP and IPSP with
respect to the AP arrival. In reality the EPSP, IPSP,
and SPSP are all generated at the same time, almost
immediately as the AP arrives. The shunting synapse
holds the soma at the soma resting potential for its dura-
tion, and therefore appears as a delay rather than an
explicit waveform. FIG. 8 is the I/O response of excit-
atory and inhibitory synapses with built in delay mecha-
nisms. From FIGS. 7 and 8 it can be seen that the shunt-
ing synapse is useful if an induced delay is needed on an
entire node; the delayed excitatory and inhibitory syn-
apses are useful when a particular synaptic output is to
be delayed.

One additional feature of the PE is an asynchronous
reset capability. This

TABLE 2
Summary of PE Bias/Parameter Relationships
Parameter Bias (V) Range
Synapse Bias/Parameter Behavior Range
EPSP4 -0V
Amplitude 0—5 IPSP -1->0V
SPSP N/A
Duration 035 practical co — O ns
Delay 035 practical co — O ns
Axon Hillock Bias/Parameter Behavior Range
Threshold/Delay 0—35 Delay 0 — practical « ns
Hard Thresh 1 —» 5+ V
Pulsewidth 0—5 2 ns — practical o
Refractory Period 0—5 practical «o — 0 ns

is motivated by the need for an instantaneous return to
the initial conditions of the PE. While the reset feature
is not a biologically accurate mechanism, it has been
found to be useful in a variety of the systems that have
been developed and will be discussed in the Examples
section.

Early versions of the processing element are de-
scribed in the following publications, which are incor-
porated by reference herein:

1. M. DeYong, R. Findley, and C. Fields (May 1992).
The design, fabrication, and test of a new hybrid
analog-digital neural processing element. IEEE
Transactions on Neural Networks, Vol. 3, No. 3,
pp. 363-374.

2. M. DeYong, and C. Fields (May 1992). Applica-
tions of hybrid analog-digital neural networks in
signal processing. Proc. IEEE International Sym-
posium on Circuits and Systems, San Diego, Calif.
Vol. 5, pp. 2212-2215.
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3. M. DeYong, R. Findley, and C. Fields (1990).
Computing with fast modulation: experiments with
biologically-realistic model neurons. Proc. Fifth
Rocky Mountain Conf. on Al, Las Cruces, N.
Mex., pp. 111-116.

4. C. Fields, M. DeYong, and R. Findley (1992).
Computational capabilities of biologically realistic
analog processing elements. In: J. Delgado-Frias,
ed., VLSI for Artificial Intelligence and Neural Net-
works. New York: Plenum, pp. 175-183.

5. R. Findley, M. DeYong, and C. Fields (1990). High
speed analog computation via VLSI implementa-
ble neural networks. Proc. Third Microelectronic
Education Conference and Exposition, San Jose,
Calif., pp. 113-123.

6. M. DeYong (1991). A VLSI implementation of a
biologically realistic axon hillock. Master of Sci-
ence Thesis, New Mexico State University, Elec-
trical Engineering Department.

7. R. Findley (1991). The design and VLSI imple-
mentation of a biologically realistic chemical syn-
apse. Master of Science Thesis, New Mexico State
University, Electrical Engineering Department.

Schematic

FIG. 9 shows a schematic diagram of the processing
element depicted in FIG. 6. The PE is comprised of
excitatory synapse circuit 30, a inhibitory synapse cir-
cuit 32, a shunting synapse circuit 34, and the axon
hillock and soma 36. In the axon hillock schematic 36
the soma resistance is represented by transistor M1 and
the soma capacitance is represented by the parasitic
capacitance of all devices connected to the soma node
and is therefore minimal. The schematic diagram de-
picted in FIG. 9 comprises a complete processing ele-
ment. In Example 14, first order integral node equations
describing the dynamics of the PE of FIG. 9 are pres-
ented. Also included in Example 14 are the input files
needed to simulate the excitatory synapse, inhibitory
synapse, shunting synapse, and axon hillock using the
Simulation Package with Integrated Circuit Emphasis
(SPICE) circuit simulation package, available from
MicroSim. Included in the input files are model state-
ments defining the standard n-well 2-poly CMOS VLSI
process.

A general neural network derived from the PE is a
network where any PE output in the network can be
input to any other PE in the network, inclusively. All
systems illustrated in the Examples section are specific
instances of the general network.

Description of Simulations

FIG. 10 shows the response of an excitatory synapse
30 to variations in Vw1. Vw1 takes values from 0 to 5
volts. Duration changes from infinity to zero. During
the simulations, one bias is modified while the others are
held constant.

FIG. 11 shows an expanded view of the smallest
rate-of-change area plotted in FIG. 10.

FIG. 12 shows the response of an excitatory synapse
30 to variations in Vw2. Vw2 takes values from 0 to 5
volts. Amplitude varies from approximately 5 to 0 volts.

FIG. 13 shows the response of an excitatory synapse
30 to variations in Vw3. Vw3 takes values from 0 to 5
volts. Delay varies from approximately infinity to 1ns.

FIG. 14 shows an expanded view of the smallest
rate-of-change area, plotted in FIG. 13.
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Adaptation Module

The adaptation modules either increase, decrease or
shunt a particular bias a delta amount in response to an
input AP. These input APs can originate from any point
in the network; connections from neighboring PEs as
well as from the output of the PE to which the adapta-
tion module is attached.

The delta bias change produced by an AP entering
the adaptation module will have a different effect de-
pending on where the bias is currently located on the
bias/parameter nonlinearity. The module adjusts the
effect of each incoming AP by modeling the bias/-
parameter nonlinearity and using negative feedback to
either increase or decrease the effect of the individual
incoming APs.

FIG. 15 shows the typical nonlinear relationship
between the DC biases and the parameters they control.
This nonlinearity is characteristic of a single MOSFET
transistor.

Schematics

FIG. 16 shows schematic diagrams for three imple-
mentations of adaptation modules useful in conjunction
with the PE of the present invention. Adaptation mod-
ule 40 contains nonlinearity compensation and oscilla-
tion compensation feedback circuitry. Adaptation mod-
ule 42 has feedforward circuitry for adjusting the range
and rate of adaptation. Adaptation module 44 contains
differential amplifier circuitry used to amplify differ-
ences between module inputs. All adaptation modules
may contain reset circuitry that returns the module to a
resting state (i.e., shunting behavior). All adaptation
modules may also contain a plurality of up, down, and
reset inputs.

Simulations

FIG. 17 and 18 show simulations for adaptation mod-
ule 42 for two different adaptation rates. In both simula-
tions, the analog voltage V10 is first increased then
decreased through a voltage range of O to approxi-
mately 5 voits. In FIG. 17, V10 is leveled at 5 volts for
approximately 2 microseconds. In FIG. 18, V10 is lev-
eled at 4 volts for 50 nanoseconds. In FIG. 17, the volt-
age V4 of adaptation module 42 rises from 0 to 4 volts
in 5 microseconds. In FIG. 18, the voltage V4 of adap-
tation module 42 rises from 0 to 4 volts in 70 nanosec-
onds. The slope and location of the DC bias V10 pro-
duced by adaptation module 42 in both FIG. 17 and
FIG. 18 can be adjusted.

Implementation Independence of Media

None of the benefits of the present invention are
dependent on the implementation media. The speed at
which the invention operates is the speed of the signal
propagation delay for the media. Re-implementing the
invention in faster media would result in an even faster
operation speed. In any media processing resolution
may be at least two orders of magnitude faster than the
propagation speed of the media because minute phase
shifts are detectable by the asynchronous temporal PE
of the invention. Other media types include, but are not
limited to: GaAs, superconducting media, and optical
circuitry.

EXAMPLES (INDUSTRIAL APPLICABILITY)

There are a large number of problems in engineering
and in nature that require adherence to the temporal
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properties of their input. FIG. 19 shows a sample hierar-
chy relating a subset of these problems. The hierarchy is
in no way meant to be complete or even absolutely
correct, but is meant to serve as an example on which to
base discussion of issues in temporal signal processing
problems (TSPs).

A distinction that can be made at a relatively high
level in the categorization of TSPs is between numerical
and non-numerical processing. While it is obvious that
all TSPs operate on signals (e.g. electrical, optical, ra-
dio), the function of the operations differs. Abstract
processing is processing done to obtain qualitative re-
sults, such as modeling particular aspects of human
cognition or biological reality. Numerical processing
tasks are those that produce quantitative results, such as
numerical measures of phase shift or frequency.

Many traditional signal processing problems fall into
the numerical processing category. Filtering operations
are needed in almost all signal processing applications
for removing noise or extracting data from a signal. The
measurement and adjustment of the phase shift between
n periodic signals is another commonly required tem-
poral processing operation. Phase-relation systems are
used to establish a reference to which data extracting
mechanisms can be synchronized. The pre-transmission
encoding and post-transmission decoding of informa-
tion through various phase and frequency modulation
schemes is a widely practiced communication tech-
nique. Simple oscillatory systems are used to provide
synchrony in serial operations or serve as drivers for
more complex oscillators, such as those used for sym-
bolic knowledge representation and robotic control.
Single-layer arbitration systems with temporal decision
criterion are used to resolve contentions between n
input signals. Hierarchical arbitration systems provide

_an ordered resolution of temporal contentions.

The class of non-numerical temporal signal process-
ing problems include those relating to cognitive or bio-
logical functioning, such as reasoning, pattern match-
ing, and neuron simulation. High level cognitive reason-
ing, such as rule application and generalization, can be
aided by representing conceptual entities with oscilla-
tory systems. Reasoning tasks such as variable-binding
and conceptual association are accomplished by fre-
quency and phase modulation of these oscillator sys-
tems. By modulating oscillatory patterns, complex rela-
tionships can be concisely represented and used in a
variety of inferencing and pattern matching applica-
tions.

Oscillatory systems are also being studied for their
potential in solving complex control problems such as
legged robot locomotion or multi-axis robotic arm con-
trol. In this case, the oscillatory systems represent infor-
mation about the phase and timing relationships be-
tween each degree of freedom under control.

Given the number and complexity of the members in
the class of TSPs, there is a need for small, fast hard-
ware to solve them. In many cases, the temporal nature
of these problems lead to large digital VLSI or clumsy
algorithmic solutions which lose practicality in a real-
world environment. The present invention is of a high-
speed, neural processing element that is ideally suited
for TSPs. Its small size and high-speed make it an ideal
alternative to digital or algorithmic implementation.

Temporal signal processing subsumes non-temporal
signal processing being a superset of the latter, while the
reverse is not true. With this in mind, we highlight some
TSPs with the realization that traditional non-temporal
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signal processing problems can be easily accommo-
dated.

Accordingly, the invention is further illustrated by
the following non-limiting examples. FIG. 20 illustrates
the symbology for PE components from which more
complex systems may be constructed. The components
are excitatory synapse 80, inhibitory synapse 81, shunt-
ing synapse 82, inhibitory-excitatory synapse pair 83,
excitatory-shunting synapse pair 84, inhibitory-shunting
synapse pair 85, inhibitory-excitatory-shunting synapse
triad 86, axon hillock 87, soma node 88, asynchronous
reset 89, and adaptation module 90. The symbology of
FIG. 20 will be used consistently throughout the fol-
lowing figures supplementing the examples.

EXAMPLE 1

The first set of components constructible from the PE
of the present invention are systems that perform the
basic logic functions of inversion, union (OR), intersec-
tion (AND), and exclusive-or (XOR). These functions
differ from their digital counterparts by functioning
temporally; the function output is dependent on past
inputs as well as the current input. This time depen-
dence produces a windowing effect; for example, a
two-input AND gate has an asserted output only when
both of its inputs arc asserted, while in the windowed
AND gate the output becomes asserted if and only if the
inputs are asserted within some adjustable time win-
dow. The inputs do :not have to be simultaneous.

FIG. 21 shows the PE-level diagrams of two exclu-
sive-or systems 92 and 93, inverter system 94, and a
windowed AND/OR coincidence gate 95.

The exclusive-or system 92 performs the exclusive-or
operation using cross-coupled inhibition. If one input is
active it inhibits the other; therefore, if both inputs
become active the cross-coupled inhibitory connections
will prevent the output of either input PE from becom-
ing active. The output PE is biased as an OR system,
and thus becomes active when either or both input PEs
are active. FIG. 22 shows the simulated I/0 behavior of
the XOR system for the trivial case of neither input
being asserted, the number one input PE only being
asserted, the number two input PE only being asserted,
and both input PEs being asserted. The output A XOR
B displays the XOR operation. The response time of the
output to a given input state is fully adjustable. In FIG.
22 the response time of the system is relatively slow.
The exclusive-or circuit 93 offers a solution with one
less processing element by combining the AND and OR
functions simultaneously within a single node.

The inverter system 94 performs an inversion func-
tion where inversion is defined as the presence of output
activity in response to no input activity and vice-versa.
This system can be used to evoke a response from a
system when a particular signal line becomes inactive,
thus preventing the system from becoming inactive due
to a lack of input activity. This concept will be detailed
further in a later example of phase relation systems,
where it is useful as a component in a self-adaptation
architecture.

The windowed AND/OR coincidence gate 95 per-
forms any combination of temporal AND and OR. For
example, if the EPSPs produced by each excitatory
synapse are large enough to fire the hillock, the system
performs the OR function. If, on the other hand, the
EPSPs must occur within a window of each other to
produce a soma potential large enough to fire the hill-
ock, the system performs the AND function. These
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functions can be combined to form more complex tem-
poral logic functions, suchas (A B) (C D).

EXAMPLE 2

Oscillatory systems have a wide variety of applica-
tions in both parallel and synchronous processing sys-
tems. Oscillatory systems provide rhythmic patterns
which may be used for synchronized/coordinated mo-
tion of multiple limbs, as required for robot locomotion.
In invertebrates these rhythmic patterns are generated
by oscillatory systems known as Central Pattern Gener-
ators (CPGs). These oscillatory systems are responsible
for repetitive operations such as motion, respiration,
circulation, and food intake. In sequential machines,
oscillators (clocks) provide synchrony for all process-
ing. Neural networks are typically not thought of as
synchronous systems, but from the real world computa-
tional point of view the need for serialization is appar-
ent. Systems in which sequential neural subsystems are
available would offer processing capabilities such as
finite state machine emulation, which may prove useful
in interfacing parallel asynchronous neural systems with
conventional digital processing systems. Sequential
capabilities may also prove useful in applications such as
time-series prediction.

FIG. 23 shows three basic oscillator structures. In all
cases oscillation is achieved by mutual excitatory feed-
back between PEs or within a single PE. In Pulse Oscil-
lator (PO) 96, oscillation is initiated by the arrival of a
single AP on the START line. The excitatory input
causes PE 1 to become active. This activity is fed to the
input of PE 2. The output of PE 2 becomes active; this
activity is in turn fed back to the input of PE 1 and
oscillation is achieved. The oscillator is stopped by a
single AP on the STOP line. The frequency of oscilla-
tion is variable by multiple mechanisms, including vary-
ing the excitatory synapse amplitude or hillock refrac-
tory period. The phase shift between the two pulse
streams is adjustable via the synapse delay setting.

FIG. 24 shows an interesting behavior of the PO 96.
When the START pulse arrives oscillation begins. Due
to the particular bias settings in this simulation, the
oscillation is at a maximal rate. The IPSP can be ad-
justed to decrease the output frequency without com-
pletely stopping the oscillation. By pulsing the STOP
line the output appears as a Binary Frequency Shift
Keyed (BFSK) signal representing a single high/low
bit. Frequency shift keyed (FSK) modulation is useful
in locomotion systems for switching between different
stable gaits, which generally requires both different
frequencies and different phase relations between limbs.
If multiple inhibitory synapses with different bias set-
tings are connected to the oscillator inputs, a range of
oscillation frequencies can be achieved.

An extension of the PO concept is made to a system
with four PEs that functions as a Four Bit Oscillator
(FBO) 98. The operational principle is exactly the same
as that of the PO 96. The four bit structure is useful
when a large number of correlated/synchronized pulse
streams are required. FIG. 24 shows the output of an
FBO simulation in which the bias settings are such that
each PE of the FBO fires a double burst during the
oscillatory cycle. A simple Single Cell Oscillator (SCO)
100 requires the least amount of circuitry and is useful
when single driver pulse streams are needed. Complex
synchronous and asynchronous CPGs can be derived
by using these basic oscillators to drive frequency divi-
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der/multiplier systems (discussed in the example of
single PE spatio-temporal correlation systems).

Complex oscillatory patterns can be generated by
modulating a number of patterns. FIG. 26 shows an
uncoupled data oscillator 102 for modulating the oscil-
latory patterns of n different inputs. This general system
shows n SCOs 100 feeding inputs through synapse tri-
ads to a node. All inputs are independent and can be
configured to produce a wide variety of complex oscil-
latory patterns based on the biases controlling the n
synapse triads. Using the uncoupled data oscillator,
primitive features represented by the SCOs can be inde-
pendently combined through modulation to create a
representation of a complex data object.

FIG. 27 shows a coupled data oscillator 104. As in the
uncoupled data oscillator 102, the system consists of n
SCOs connected by synapse triads to a node. However,
in this system the output of node i—1 is directly con-
nected by a synapse triad to node i. This adds an even
larger range of behaviors to the system because the
inputs to the coupled data oscillator are dependent on
one another. When the SCOs get a start pulse, the out-
put of each node i will feed into the central node to
produce an output similar to the uncoupled data oscilla-
tor. Since each output is also fed to a neighboring node,
the next input received by the central node will be the
output of each node i modulated with the output of
node i—1. Dependencies between data stored in the
SCO can thus be modeled and represented by the sys-
tem.

EXAMPLE 3

Another set of constructible components are tinning
systems. FIG. 28 shows the PE-level diagram of an
Auto-Reset Timer (AT) 106. When an AP arrives at the
input of the AT system 106 it produces two APs sepa-
rated by an adjustable period of time. The input AP
enters an excitatory synapse on PE 1 and an inhibitory
synapse on PE 2. The excitatory synapse on PE 1 gener-
ates an EPSP and causes PE 1 to fire an AP. The AP
feeds back to the input of PE 2. The EPSP generated by
the feedback AP is absorbed by an IPSP that was pro-
duced at the input of PE 2 in response to the input AP.
After the first output AP is generated the input of PE 1
is still active and PE 2 has returned to a resting state.
When the refractory period of PE 1 has elapsed it fires
another AP in response to its still excited soma node.
This AP once again feeds back to the input of PE 2 as
an EPSP; since the IPSP has dissipated, this causes PE
2 to fire an AP. This AP resets PE 1 to its resting state
and the cycle is complete. Thus the timing period is the
refractory period of PE 1, which can range from a
nanosecond to practical infinity (See Table 2). FIG. 29
shows the AT system 106 repeatedly fired at a time
period of approximately 38 ns. FIG. 30 shows the time
period extended to approximately 1600 ns to illustrate
range.

The AT system 106 may be used to form more elabo-
rate timing systems such as a Retriggerable Timer (RT)
108 and a Ring Oscillator (RO) 110. The RT system 108
consists of two AT systems that are switched by a tog-
gle system that is itself very similar to the AT system
106. The outputs of the two AT systems are input to an
OR operation system to produce a single output. The
RT system 108 is retriggered each time an AP arrives
on the input line by toggling between the two identi-
cally biased AT systems and thus restarting the timing
period.
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The RO system 110 consists of n AT systems con-
nected in series. The input of each succeeding stage is
fed by the single reset pulse of the preceding AT system
106 (output of PE 2). Master START and STOP mech-
anisms are included for global control. The unique char-
acteristic of this oscillator is that each component of the
complete oscillatory cycle is independently controlled
with respect to the duration of the other components.
The length of the complete oscillation is a function of
the RO 110 as a whole. The individual components of
the oscillation are functions of the states of the compo-
nent ATs, and can be used to represent components of

a single variable or data item.

EXAMPLE 4

The need to relate signals in terms of their phase
relations is present in almost all signal processing appli-
cations. No information can be extracted from a signal if
a reference point has not be established. The reference
may be the phase relation between n input signals, or
between n input signals and an internally generated
synchronizing signal.

FIG. 31 shows a Phase Shift Demodulator (PSI))
system 112 that determines if the phase difference be-
tween two periodic signals is within a window. If the
phase shift is within the window the output (PE 4)
becomes active. The PSD system 112 functions in the
following manner. A periodic signal is input to PE 1,
which is set to fire once each period of the incoming
signal. Each AP generated by PE 1 fires an IPSP and an
EPSP simultaneously on the input of PE 4. The EPSP
has a long time duration at an amplitude not high
enough to fire PE 4. The IPSP has a very short time
duration and is used to shape the rising edge of the PE
4 soma waveform. The long-duration low-amplitude
EPSP serves as an enable signal for PE 4. A periodic
signal of the same frequency as that applied to PE 1, but
with a possibly-zero phase shift, is input to PE 2. PE 2
is also set to fire an AP once each period of the input
signal. This AP drives an excitatory synapse on PE 4
that produces a short-duration low-amplitude EPSP. If
this EPSP occurs while PE 4 is enabled it will cause PE
4 to become active and fire an AP. The length of the
enable period is set by a control signal on PE 3. The
control signal has a phase shift with respect to the signal
on the input of PE 1. This phase shift is the window
within which PE 4 is enabled. The control signal causes
PE 3 to fire an AP, which resets the excitatory synapses
connected to PE 4 and the PE 4 hillock itself. If the PE
2 EPSP occurs when PE 4 is not enabled is does not
have sufficient amplitude to cause PE 4 to become ac-
tive. The system is thus controlled by the relative phase
shift between the PE 1 and 3 input signals and with
proper bias settings will offer linear control.

Two self-contained alternatives can be obtained by
augmenting the PSD system 112 of FIG. 31. First, the
external control signal can be replaced with an internal
oscillator which is synchronized with respect to the PE
1 input signal. The enable window on PE 4 will then be
a function of the relative phase shift between the PE 1
input signal and the internally generated signal, and is
adjusted via the oscillator biases, which do not offer
linear control. Second, the control signal can be done
away with completely, in which case the enable win-
dow becomes a function of the time duration of the PE
1 EPSP that is input to PE 4 (in the original PSI) config-
uration its duration is set to be longer than the input
signal period). The control in this case is also nonlinear
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and involves the adjustment of more than one system
parameter to shift the enable window. FIGS. 32 and 33
show the PSD system response to two input scenarios.
In FIG. 32 the PE 2 input signal is lagging the PE 1
input signal by 60 degrees. It can be seen in the second
plot of FIG. 32 that PE 4 becomes active (OUT 4),
which signifies the phase shift is within the acceptable
window. If the phase shift between the PE 1 and 2 input
signals is increased to 70 degrees lagging it is no longer
within the acceptable window and therefore PE 4 does
not become active (see second plot of FIG. 33).

The PSD system 112 is only designed to monitor the
case where the PE 2 input signal is lagging the PE 1
input signal. If both lagging and leading phase shifts are
to be monitored simultaneously the PSD system must
be modified as follows. A toggle system is used to cross-
couple PE 1 and PE 2 such that the first signal to arrive
fires the long-duration low-amplitude enable EPSP and
the second signal to arrive fires the short-duration low-
amplitude EPSP, regardless of the order of arrival. This
would allow for the monitoring of both leading and
lagging signals, but the PE 4 output will only signify an
acceptable phase shift and not its polarity. To also moni-
tor the polarity of the shift an additional two PE system
must also be added to the original PSD system 112. This
two PE network determines the arrival order of the two
signals (the phase shift polarity). This subsystem is dis-
cussed in the example of winner-take-all systems.

The PSD system 112 and its hybrids only determine if
n signals arrive within some window of each other, and
do not actually measure the phase shift between the
signals. An elaboration of the PSD system 112 called
the Phase Shift Quantifier (PSQ) 114 measures the rela-
tive phase shift between two inputs, and is also shown in
FIG. 31. The output state of the system is fed back to
control the phase of the internal oscillator that controls
the length of the enable window. The feedback involves
the previously described windowed inverter 118 and a
learning (adaptation) module 116. The learning module
116 is an adaptation module that controls a particular
DC bias parameter of a PE, as discussed in the descrip-
tion of the preferred embodiments.

The PSQ system 114 shown in FIG. 31 operates as
follows. The output of PE 4 is active when the phase
shift between the signals on the inputs of PE 1 and 2 is
within the enable window. This activity is fed into the
Type H1 learning module 116 to decrease the thre-
shold/delay bias of the SCO, which causes a reduction
in the phase shift of the SCO with respect to the PE 1
input signal, and thus a reduction in the enable window
duration. This continues until the window is reduced to
the point where PE 4 becomes inactive. At this point
the inactivity of PE 4 is inverted by the the windowed
inverter 118, and the inverted signal is input to the
adaptation module to increase the threshold/delay bias
of the SCO hillock, and thus increases the enable win-
dow duration. As PE 4 oscillates about active/inactive
states it converges to the actual phase shift between the
PE 1 and 2 input signals. There arc two possible scenar-
ios in which the oscillations are too large and do not
converge to a tight enough value about the desired
settling point. If the bias value is in the nonlinear region
of the bias/parameter curve, the delta bias changes can
cause large jumps back and forth about the desired
solution. The nonlinear feedback mechanism described
above is designed to cope witch this situation. It is also
possible that the desired settling point is not in the non-
linear region of the bias/parameter curve, and therefore
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will not be compensated for by the above nonlinear
feedback mechanism. A second control mechanism
must be employed in the learning module network, by
adding a system that either increases or decreases the
effect of the individual AP depending on the rate of
change of the adaptation module inputs (i.e., the second
derivative of the bias voltage). The effect of each AP
arriving on an “increase” input will be changed such
that net activity between the increase/decrease inputs
becomes equal. This settling as learning behavior can be
extended to larger, more complex systems.

EXAMPLE 35

Filtering is used ubiquitously in signal processing
applications to remove noise from an input signal or
demodulate signals from a carrier wave. PE-level dia-
grams of the four basic filter structures (fow-pass 120,
high-pass 122, band-pass 124, and band-stop 126) are
shown in FIG. 34. From examination of FIGS. 36 and
37 it can be seen that the band-pass and band-stop filters
124 and 126 are formed by ORing and ANDing the
low-pass and high-pass network 120 and 122 outputs,
respectively.

Before describing the operation of the filtering sys-
tems, the filtering of pulse streams must be discussed.
The half-power frequency (3 dB point) of the filter and
the filter type effectively define which frequencies are
passed and which frequencies are attenuated by the
filter, i.e., the pass-band of the filter. If a frequency of
interest is within the pass-band of the filter, it should be
allowed to pass pulse for pulse. If, on the other hand,
the frequency of interest is not in the pass-band of the
filter, it should be attenuated by at least fifty percent.
When dealing with pulse streams a logical interpreta-
tion of attenuation by fifty percent is the removal of
every other pulse from the scream, thus reducing the
frequency and overall power of the stream by fifty
percent. This definition of pulse stream attenuation will
be used in the following discussion of the four basic
filters.

FIG. 34 shows the PE-level diagram of the low pass
filter system 120. An incoming AP stream fires EPSPs
on the inputs of both PE 1 and 2. PE 1 is biased so as to
allow a one-to-one firing ratio between the PE input
and output if the inhibitory synapse on PE 1 is inactive.
The inhibitory feedback from PE 2 to PE 1 is inactive if
the input frequency is sufficiently low to allow the SCO
to maintain subthreshold activity on the input of PE 2.
If the input frequency increases to the point where it
begins to overcome the SCO inhibitory input on PE 2,
the inhibitory feedback to PE 1 will become active
causing a reduction in the input/output firing ratio of
PE 1. When the 3 dB frequency is reached the input-
/output firing ratio of PE 1 will be 2:1. The high-pass
filter system 122 operates by the same principle, except
the role of the excitatory and inhibitory synapses on the
input of PE 2 is reversed. If the input frequency be-
comes high enough to overcome the SCO excitatory
input the inhibitory feedback to PE 1 becomes inactive
and the input/output firing ratio becomes 1:1. FIGS. 35
and 36 show the 1/0 response of the high-pass filtering
system 122. FIG. 35 shows the filter allowing a pulse-
stream with a period of 64 nanoseconds to pass 1:1,
while FIG. 36 shows a pulse-stream in which the period
is increased to 67 nanoseconds, and the signal is not
allowed to pass at all. The slope of the transition region
is a function of the IPSP duration and the frequency of
the internal SCO (PE 3).
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The band-pass and band-stop filters 124 and 126 are
composites of the low-pass and high-pass filter systems
120 and 122. If the outputs of the low-pass and high-pass
structures 120 and 122 are ORed together and the 3 dB
frequency of the low-pass filter 120 is higher than the 3
dB frequency of the high-pass filter 122, the composite
filter is a band-pass. The pass-band is the band between
the two respective frequencies. If the output of the
low-pass and high-pass structures 120 and 122 are
ANDed together and the 3 dB frequency of the low-
pass filter 120 is lower than the 3 dB frequency of the
high-pass filter 122, the composite filter is a band-stop.
The stop-band is the frequencies between the two re-
spective frequencies.

The addition to the basic filter structures of a feed-
back adaptation network similar to the one employed in
the PSQ system 114 of FIG. 31 can produce an auto-
tuning filter system. During the tuning phase of opera-
tion the feed-back network will tune the SCO of the
filter system such that the 3 dB frequency/frequencies
of the filter are set to the frequency/frequencies present
on the system input. Once tuned the feedback system is
relaxed, and the filter is in normal operation mode with
fixed parameters until such time that another tuning
cycle is desired.

EXAMPLE 6

Another component constructible from the PEs of
the present invention is a set of Winner-Take-All
(WTA) systems that choose a winner or winners from a
group of contending signals, based on some selection
mechanism such as signal arrival time or signal fre-
querncy.

FIG. 37 shows a bifunctional WTA system 128 that is
capable of choosing a winner based on either signal
arrival time or signal frequency. Which criterion is used
is a function of the input signal period and the time
duration of inhibitory feedback. The bifunctional WTA
network 128 is a single-layer structure that uses mutual
inhibitory feedback to choose a winner from a group of
n’ =4 contenders. If the period of the incoming pulse
streams is less than the duration of the inhibitory feed-
back the network chooses a winner or winners based on
signal arrival time, and is called a Temporal-WTA. This
behavior can be seen in FIG. 38. If the duration of the
inhibitory feedback is longer than the period of the
incoming signals the periods of inhibition overlap and
therefore prevent any pulses that arrive after the deci-
sion has been made from ever being considered. If the
inhibitory feedback is strong enough that only one IPSP
is needed to completely inhibit the PE input then only
the first signal to arrive wins. In the simulation shown in
FIG. 39, three PEs must become active in order for the
inhibitory feedback to sufficiently inhibit the input of
the forth PE, therefore the first three PEs to become
active are chosen as winners.

If the period of the input pulse streams is longer than
the duration of the inhibitory feedback the WTA net-
work 128 of FIG. 37 chooses a winner based on pulse
stream frequency and is referred to as a MAX{NET.
Since the duration of the inhibitory feedback is less than
the period of the incoming signals the feedback inhibi-
tion has gaps during which another PE may become
active. The PE with the higher frequency input has a
higher probability of becoming active during these gaps
and will eventually will become dominant over the
other PEs. With proper bias settings only the PE with
the highest input frequency remains active, but in the
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general case spurious APs are produced by the low
frequency PEs. There is such a large frequency differ-
ence between the output pulse streams that if the single-
layer network is cascaded only the highest frequency
signal is allowed to pass through both layers. FIG. 39
shows the 1/0 behavior of the single-layer MAXfNET.

FIG. 37 also shows a general Temporal-WTA net-
work 130. The behavior of the single-layer Temporal-
WTA 128 is strongly frequency dependent, which lim-
its its applicability to general problems. The general
Temporal-WTA. 130 on the other hand is frequency
independent. The frequency independence is achieved
by the input layer of the network. Incoming pulse
streams cause the input PEs to become active, but the
refractory periods of these input PEs are set such that
only the first AP is allowed to pass, and therefore only
a single AP passes to the second layer regardless of the
input frequencies. The second layer of the network uses
self-excitatory feedback and mutual-inhibitory feed-for-
ward connections to choose a winner or winners based
solely on the arrival time of input pulse streams. FIG. 40
shows the I/0 behavior of the general Temporal-WTA
130 as it chooses the first three signals to arrive.

Similar structures can be constructed to pick only the
k*h signal to arrive or the k highest frequency. WTA
networks with much more complicated decision crite-
rion may also be developed. These WTA systems are in
a sense coupled filters in which the relationships be-
tween signals as well as the relationships between the
signals and the networks themselves determine the
overall behavior of the system. WTA networks are
typically used as arbiters in applications that are com-
petitive in nature, such as resource allocation, data rout-
ing, data compression, selective attention, and competi-
tive learning.

EXAMPLE 7

All of the previous multi-PE systems :perform spatio-
temporal correlation, either between input signals or
between the input signals and the current states of the
systems themselves. A single PE system, however, is
also capable of a wide range of spatio-temporal correla-
tion behaviors. The behavior of the multi-PE systems is
usually much more diverse and easier to control than
the single PE systems, but in restricted problems the
single PE approach offers a simpler solution.

A single PE system consisting of an excitatory syn-
apse attached to a hillock can be used as a high pass
filter, a basic delay element, and a frequency divider/-
multiplier. The system is performing a high-pass filter-
ing operation if the amplitude and duration of the EPSP
are set such that an input AP stream of a certain mini-
mum frequency is needed to produce activity. By ad-
justing the delay of the EPSP the system can be made to
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propagation time. If the refractory period of the hillock
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AP stream, it will ignore every other AP in the input
stream. More APs are ignored as the refractory period
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period of the input pulse stream and the EPSP duration
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plier for a narrow range of input frequencies.
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The windowed AND/OR operation discussed earlier
is an example of a single PE spatio-temporal correlation
system. In conventional AND and OR gates the output
conveys the state of the inputs for a particular point in
time. The windowed AND/OR system, however, con-
veys the temporal relation of the inputs over a period of
time. Suppose the duration of one EPSP is set to 20
nanoseconds and the duration of the other is set to 50
nanoseconds. If an AP arrives at the short duration
synapse first the second AP must arrive within 20 nano-
seconds to assert the system output. If, on the other
hand, an AP arrives at the long duration synapse first
the second AP has a longer 50 nanosecond period in
which to arrive. This offers much more information
than the conventional AND and OR operations.

EXAMPLE 8

The measurement of extrema in waveforms is an
important task with many applications. FIG. 41 shows
three components used to form two extrema detectors.
The adaptable extrema detector 130 is designed to mod-
ify the threshold of the node to be equal to the level of
the input signal. When the signal reverses direction, an
extrema is found. To detect a maximum, the SCO 100
pressures the adaptation module 116 to move the
threshold down. Thus, before the input line, IN, be-
comes active causing the PE to become active, the
threshold of the node will be at the resting potential.
When the PE becomes active, the adaptation module
moves the threshold up enough to match the input
signal. Because there is a delay between the input signal
arriving and the adaptation module adjusting the
threshold, the node will fire APs. The APs are trapped
by the windowed inverter 118, rendering the system
output inactive. When the input signal reverses direc-
tion, it will immediately be below the threshold set by
the adaptation unit, causing the node to cease firing. As
this happens, the windowed inverter begins firing APs.
The output of detector 130 may be connected to the
input of node 132. Node 132 has a minimum threshold
and an infinite refractory period. When an AP arrives
on the IN line of node 132, the node will fire one AP
and then will indefinitely remain in its refractory per-
iod.

To detect a minimum, the operation of the adaptation
module 116 and SCO 100 of the adaptive extrema detec-
tor 130 are reversed: the SCO pressures the adaptation
module to move the threshold up, and the adaptation
module attempts to move the threshold down in re-
sponse to the activity of the PE. Connected to the out-
put of the adaptive extrema detector is the inverse input
node 134. Upon start up, the threshold is such that the
PE will be active. This activity will cause the adapta-
tion unit to reduce the threshold of the device to a level
Jjust below the input activity level. This minimal activity
level is maintained until the input reverse direction and
begins to increase. The increase will cause a nonlinear
jump at the output of the PE. The windowed inverter
118 captures these APs to turn the system off. However,
the second windowed inverter of node 134 then turns
on, sending APs. Node 134, like node 132, is set to have
a minimum soma threshold and an infinite refractory
period. Thus, the A Ps from the windowed inverter of
node 134 will cause one AP to be emitted from node
134, and will then :indefinitely remain in its refractory
period.
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EXAMPLE 9

Data conversion circuits are also extremely useful.
FIG. 42 shows a Serial Pulse Stream to Parallel Pulse
Stream Converter 136. The signals on input line IN,
which are shown at times T . . . Ty, are distributed in
sequence throughout lines 1. . . N, appearing on output
lines OUT1 . .. OUTN with the same relative delays,
T;—T;—1. Nodes 2 ... . N require both excitatory synap-
ses to be enabled in order to fire. Node 1 is held at a
resting potential until the first AP arrives on its excit-
atory synapse. Node 1 fires an AP on OUT1 which is
connected to the inhibitory synapse on node 1 and a
second excitatory synapse on node 2. The AP stops
node 1 from firing again until reset, and enables node 2.
The second spike arriving on input line IN will bypass
node 1, which is now inactive, and be received at node
2. Since the second excitatory synapse of node 2 has
been enabled, it fires an AP. The delay between the AP
of node 1 and the AP of node 2 is equal to the delay
between the first and second spikes on the input line.
The AP from node 2 feeds back to the second excitatory
synapse on node 2 to disable it until it is re-enabled, and
enables the second excitatory synapse on node 3. This
process continues until the Nth signal arrives. The out-
put from node N is connected to a shunting synapse and
also resets the inhibitory synapse on node 1, enabling
node 1 for the next input spike. The shunting synapse
returns node 1 to the resting state and the cycle begins
again with the next incoming AP.

FIG. 42 also shows a single node AND/OR coinci-
dence gate 95. The coincidence gate is biased to fire on
receipt of any EPSP and therefore performs a Parallel
Pulse Stream to Serial Pulse Stream conversion.

FIG. 43 shows a Serial Digital to Parallel Pulse
Stream Converter 140. Unlike the previous converters,
the signal arriving on the input line, IN, is a digital
signal. Thus, the presence or absence of an AP implies
a high or low digital bit. A single hillock is used to
convert each rising edge of the digital signal to an AP.

A start pulse activates the system by firing the excit-
atory synapse on node 0, which causes node 0 to fire on
line OUTO. The output of node 0 feeds back to the
inhibitory synapse on node 0. This prevents any further
APs from activating node 0, until the inhibitory synapse
is reset. The output of node 0 also starts the auto-reset
timer 106. The period of the AT is set to be the digitiza-
tion rate of the digital signal. The AT sends two serial
pulses delayed by the period of the clock signal to the
Serial Pulse Stream to Parallel Pulse Stream (SP-PP)
converter 136 with n=2. The first pulse from the con-
verter enables the excitatory synapse on node 1. If an
AP arrives on the input line, IN, when the excitatory
synapse is enabled, the node becomes enabled. This
activity is fed back to reset the enable synapse on the
input to node 1, as well as resetting the AT and the
SP-PP converter of node 0. The output from node 1
also enables the AT of node 2. If an AP does not arrive
on IN, the timer elapses and the second AP from the
AT on node 0 is sent to reset the excitatory synapse on
node 1. The second AP also starts the AT of node 2.
The process continues until the Nth processor is
reached. The line OUTN and the second line from the
SP-PP converter feed back to shunting synapses on
node 1, and also reset the inhibitory synapse on node 0.

FIG. 44 shows an Electromagnetic Radiation to
Pulse Stream converter 141. Electromagnetic radiation
incident on the collection well 143 causes a charge to
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accumulate in the well, producing a voltage input to the
axon hillock. If the voltage exceeds a threshold, the
hillock becomes active. This produces an AP stream on
the output line OUT. The activity also feeds back to the
pass transistor 142 and enables it. This causes the collec-
tion well to be reset to Vwell. This allows for the asyn-
chronous conversion of electromagnetic radiation such
as visible light to an AP stream.

EXAMPLE 10

It is useful to extract spatial and temporal features
from multi-dimensional data. FIG. 45 shows a spatial
feature extractor 144. The input lines INA and INB
correspond to two spatially adjacent PEs. The activity
of A and B is fed through synapse triads to nodes 1 and
2, allowing any correlation operation to be performed
on the inputs at nodes 1 and/or 2. The outputs of nodes
1 and 2 reflect any correlation or anti-correlation of the
two input signals which happen to be of interest. The
correlation information output by node 1 can then be
correlated in another desired manner with signal INA
by node 3 and the result output to QUTA.. The correla-
tion information output by node 2 can be correlated
with signal INB by node 4, with output to OUTB. Any
number of neighbor correlations and metacorrelations
can be processed by employing an additional level of
nodes subsequent to the level of node 3 and node 4.

FIG. 46 shows a temporal feature extractor 146.
Again, INA and INB are considered to correspond to
spatially adjacent cells. The function of the circuit is to
detect motion across the adjacent cells. INA excites
node 2 and inhibits node 1 while INB does the opposite.
Node 1 inhibits node § (which is stimulated by oscillat-
ing node 3) and thereby slows or stops output on
OUTA. Node 2 inhibits node 6 (which is stimulated by
oscillating node 4) and thereby slows or stops output on
OUTB. When INA and INB are dissimilar, OUTA or
OUTRB is firing according to which of INA or INB is
dominant. When INA and INB are similar, the XNOR
circuit 146 (which is simply XOR circuit 93 piped to an
inverter circuit 94) causes nodes 5 and 6 to stop firing.
When INA and INB are dissimilar for a long period (as
would occur in sensory detection of an edge), OUTA or
OUTRB, depending on dominance of INA or INB, will
be firing rapidly. If the dissimilarity is short, INA or
INB will be firing more slowly.

EXAMPLE 11

Practical problems often require the systems devel-
oped with the PEs of the present invention to cause
actions in the outside world, such as three dimensional
positioning. FIG. 47 illustrates an X-Y position control-
ler 148. The circuit comprises a servo 160 for control-
ling the X-Y position of a input collection device on a
point within a two-dimensional grid. The circuit further
comprises ORed inputs 149 representing levels of activ-
ity (e.g., video, audio, radio, etc.) along a horizontal or
vertical line through the target grid. North, South, East,
and West nodes detect overall levels of activity in the
corresponding hemisphere of the grid, and provide
excitatory and inhibitory input to servo controlling
directional nodes, which operate on the two servos
(NS, EW) via adaptation modules 116. This system can
be expanded to higher dimensions.

FIG. 48 illustrates a Z position controller 152. The
circuit also comprises a servo 150, but one designed for
focusing of a sensor on a point at a distance closer to or
farther away from the sensor. Inputs to the system are
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through ORed inputs 154 representing levels of activity
at the outer edges of squares of varying widths, the
squares being nested within one another. The ORed
inputs supply signals to excitatory synapses on a ZOOM
node as well as to inverters 156 which in turn supply
signals to a PAN-OUT node. The ZOOM and PAN-
OUT nodes operate on the servo via an adaptation
module 116. This system may be expanded to be used to
focus on more complex geometric objects.

EXAMPLE 12

A coupled-grid retinal processor 170, illustrated in
FIG. 49, is constructible from the processing element of
the present invention. An example retinal processor is
formed by combining the subsystems of Example 10 and
Example 11. The retinal processor provides real-time
visual processing capabilities. The system is a multi-lay-
ered network of PEs.

The circuit comprises an interface system 160 which
comprises an array of electromagnetic radiation to pulse
stream converters 141 for real-time image data gather-
ing and processing and a variation of the serial digital to
parallel pulse stream converter 140. The latter is useful
for the processing of stored digital image data rather
than analog visual data. The output of the interface
system is provided to spatial feature detection systems
144, which in turn provides data to temporal feature
detection systems 146, which then provides data to both
X-Y position controller 148 and Z position controller
152. The position controllers then supply commands to
mechanical actuators for system positioning.

The system performs four basic functions: feature
enhancement and extraction; motion detection and ve-
locity measurements; target tracking; and system focal
length adjustment. These functions are the principal
components of the motivating task of the retinal system:
the tracking and enhancement of non-uniform objects
with various background conditions. The time-depend-
ent nature of the PEs of the present invention allows the
system to extract information from the temporal as well
as spatial characteristics of the input signals. Utilization
of the temporal characteristics of the input often pro-
duces more efficient solutions than could be produced
using static, time invariant input signals.

The input layer of the system is a two-dimensional
array of the electromagnetic radiation to pulse stream
converters 141 that produces an AP stream in response
to photon absorption. Intermediate layers of the system
are locally highly connected and globally sparsely con-
nected. Each layer may obtain inputs from and provide
outputs to any other layer in the system. The local
connectionis take the form of task-specific subsystems
designed to address the, spatio-temporal characteristics
of a node and its nearest neighbors. The local connec-
tion subsystem for feature extraction and enhancement
amplifies the similarities and attenuates the differences
between neighbors 144. Motion detection and velocity
measurements are done by highlighting the temporal
differences between a node and its neighbors 146.
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The X-Y 148 and Z 152 position control subsystems
are both implemented by imposing global constraints on
the input layer. The output of the subsystems under
these constraints interfaces with the servo control sys-
tem which balances the constraints by moving or
changing the focal length of the lens system.

The real-time processing capability of the retinal
system stems directly from its inherently parallel archi-
tecture. Receiving input data in parallel greatly reduces
time needed to prepare inputs when compared to serial
data input. Real-time parallel processing of the input
data also allows the system to capture subtle temporal
characteristics that might be lost through serialization.
Since the gathered charge is viewed directly, the
“smearing” effect associated with CCD cameras is not
an issue. This gives the system a higher effective resolu-
tion than a comparable serial CCD system.

This example discusses a retinal processing system as
it applies to visual light. By adjusting the DC biases, the
system can be applied to input wavelengths from at least
3E—3 to 3E? meters.

EXAMPLE 13

As in all data processing systems it is desirable to
program a particular sequence of behaviors. FIG. 50
illustrates a general purpose system 180, useful for pro-
gramming any system 190 (whether or not made up of
the PEs of the present invention). For illustration pur-
poses, in FIG. 50 system 190 has been shown as a tem-
poral processing system. The coupled and uncoupled
data oscillators 102 and 104 illustrated in FIGS. 26 and
27 can be thought of as storing patterns of information
which, when provided to an adaptation module 10,
constitute continuous programs. The programs provide
instructions to the adaptation module which controls a
bias parameter of system 190, which in turn dictates
system behavior.

FIG. 51 illustrates a general cognition system 220 that
also utilizes the data oscillators 102 and 104. The system
takes in real-time environmental stimulus from a variety
of sensor arrays 200, 202, and 204 and provides a re-
sponse stimulus to the environment. The sensors arrays
provide data to sensor correlation array 206 which
constructs an overall synthesis of the external stimulus
to a present-state knowledge oscillator, which may be
either coupled or uncoupled. The knowledge oscillator
multiplexor and controller 208 interfaces with the pre-
sent-state knowledge oscillator and an array of knowl-
edge oscillators for storing patterns. A correlated pat-
tern is output from the multiplexor and controller,
which includes a program for driving response transfer
system 210, such as a servo mechanism.

EXAMPLE 14

The schematic of the preferred PE of the present
invention shown in FIG. 9 is fully defined by the fol-
lowing SPICE simulation file for the circuit and by the
following MOSFET node equations corresponding to
the correspondingly labeled points in the schematic:

Excitatory Synapse

** SPICE file created for circuit esyn
** Technology: scmos

*%

** NODE: 0 = GND

** NODE: 1 = Vdd

** NODE: 2 = Error
MO0 100 1 101 O nfet L=11.0U W=5.0U
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M1 0 102 103 0 nfet L=2.0U W=10.0U
M2 102 102 0 0 nfet L=2.0U W=5.0U
M3 0 104 102 0 nfet L=2.0U W=10.0U
M4 102 105 106 O nfet L=2.0U W=10.0U
M5 101 103 1 1 pfet L.=2.0U W=10.0U
M6 0 106 0 0 nfet L=10.0U W=10.0U
M7 1 103 103 1 pfet L=2.0U W=35.0U
Mg 0 1 106 0 nfet L=2.0U W=5.0U

M9 104 107 1 0 nfet L=2.0U W=20.0U
M10 0 108 104 O nfet L.=2.0U W=35.0U
M11 0 104 0 O nfet L.=10.0U W=10.0U
M12 102 109 1 1 pfet L=2.0U W=35.0U
M13 0 110 104 0 nfet L=2.0U W=5.0U
M14 1 109 109 1 pfet L=2.0U W=5.0U
MI15 111 107 1 0 nfet L=2.0U W=10.0U
M16 0 112 111 0 nfet L=5.00 W=35.0U
M17 0 111 0 O nfet L=10.0U W=10.0U
M18 0 110 111 O nfet L=2.0U W=35.0U
M19 109 111 0 0 nfet L=2.0U W=10.0U
** NODE: 112 = m2

C0 111 0 43F

** NODE: 111 = !4
C1 110 0 23F

** NODE: 110 = ml4
C2 109 0 41F

** NODE: 109 = 15
** NODE: 107 = ml

C3 108 0 22F

** NODE: 108 = !14
C4 106 0 39F

** NODE: 106 = 18
** NODE: 105 = 7
C5 101 0 37F

** NODE: 101 = 110
C6 104 0 50F

** NODE: 104 = m17
C7 103 0 45F

** NODE: 103 = 19
C8 10 123F

** NODE: 1 = Vdd!
C9 100 0 13F

** NODE: 100 = 120

C10 102 0 54F

** NODE: 102 = 16

** NODE: 0 = GND!

*

* analysis

vin 107 0 pulse(0 5 10n 0.2n 0.2n 2.5n 10000n)
vdcl 112 0 dc 0.8v

vde2 105 0 dc 3.0v

vdc3 108 0 dc 5.0v

vdc4 110 0 dc 0.0v

*vr 110 O pulse(0 5 S0n 0.2n 0.2n 2.5n 100n)
vde5 100 0 de 1.0v

Vdd1l 0dc5.0v

.options it15=0

.tran 1.0n 1500n 0.0n 1.0n

.stepvde1 05 .2

.probe v(107) v(111) v(109) v(102) v(106) v(103) v(101) v(104) v(110)
*

*

.MODEL nfet NMOS LEVEL=2 LD=0.250000U TOX =409.000008E-10

+ NSUB=9.618740E+ 14 VTO=0.838473 KP=4.551000E-05 GAMMA =0.2116

+ PHI=0.6 UO=539 UEXP=0.102074 UCRIT=93%07.4

+ DELTA=1.62282 VMAX=76566.1 XJ=0.250000U LAMBDA =4.954671E-03

+ NFS=1.086360E+ 12 NEFF=1 NSS=1.000000E+ 10 TPG= 1.000000

+ RSH=27.530000 CGDO=3.166085E-10 CGSO=3.166085E-10 CGBO=4.061267E-10
+ CI=8.657000E-05 MJ=0.796110 CISW =4.985600E-10 MJSW =0.342724 PB=0.800000
. -

*

MODEL pfet PMOS LEVEL=2 LD=0.250000U TOX =409.000008E-10

+ NSUB=1.124300E+ 16 VTO=—0.848423 KP=2.094000E-05 GAMMA =0.7236

+ PHI=0.6 UO=265 UEXP=0.294641 UCRIT =54996.8

+ DELTA =4.886458E-02 VMAX =100000 XJ=0.250000U LAMBDA =5.144312E-02
+ NFS=1.198081E+ 12 NEFF=1.001 NSS=1.000000E+ 10 TPG = — 1.000000

+ RSH=66.580000 CGDO=3.166085E-10 CGSO=3.166085E-10 CGBO=4.274259E-10
+ CJ=3.208700E-04 MJY=0.592940 CJSW =3.06660E-10 MJSW =0.294696 PB=0.800000
*

.end

Inhibitory Synapse

** SPICE file created for circuit isyn
** Technology: scmos

34
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%k

** NODE: 0 = GND

** NODE: 1 = Vdd

** NODE: 2 = Error

MO 0 100 101 0 nfet L=2.0U W=10.U
M1 100 100 0 0 nfet L=2.0U W=5.0U
M2 0 102 100 O nfet L=2.0U W=10.0U
M3 100 103 104 0 nfet L=2.0U W=10.0U
M4 101 0 105 1 pfet L=11.0U W=5.0U
M5 0 104 0 0 nfet L=10.0U W=10.0U
M6 0 1 104 0 nfet L.=2.0U W=5.0U

M7 102 106 1 0 nfet L=2.0U W=20.0U
M8 0 107 102 0 nfet L=2.0U W=5.0U
M9 0 102 0 0 nfet L=10.0U0 W=10.0U
MI10 100 108 1 1 pfet L=2.0U W=5.0U
M11 0 109 102 0 nfet L=2.0U W=5.0U
M12 1108 108 1 pfet L=2.0U W=5.0U
M13 110 106 1 0 nfet L=2.0U W=10.0U
M14 0 111 110 O nfet L=5.0U W=5.0U
M15 0 110 0 0 nfet L=10.0U W=10.0U
M16 0 109 110 O nfet L=2.0U W=5.0U
M17 108 110 0 O nfet L=2.0U W=10.0U
** NODE: 111=m2

C0 110 0 43F

** NODE: 110 = 4
C1109 0 23F

** NODE: 109 = ml4
C2 108 0 41F

** NODE: 108 =15
** NODE: 106 = m!

C3 107 0 22F
** NODE: 107 = 14
C4 105 0 16F
** NODE: 105 = 120
C5 104 0 39F

** NODE: 104 =18
** NODE: 103 =17
C6 10 8F

** NODE: 1 = Vdd!
C7 102 0 SOF

** NODE: 102 = ml7
C8 101 0 34F
** NODE: 101
C9 100 0 54F
** NODE: 100 = 16

** NODE: 0 = GND!

*

* analysis

vin 106 0 pulse(0 5 10n 0.2n 0.2n 2.5n 100n)

vdcl 111 0 dc 0.8v

vdc2 103 0 dc 1.2v

vde3 107 0 dc 5.0v

*vdc4 109 0 dc 0.0v

vr 109 0 pulse(0 5 50n 0.2n 0.2n 2.5n 100n)

vdcS 105 0 de 5.0v

Vdd1 0dc5.0v

.options it15=0

.tran 0.1n 150n 0.0n 0.1n

*step vdc3 05 .2

.probe v(106) v(110) v(108) v(100) v(104) v(101) v(102) v(109)
*

9

*

*

.MODEL nfet NMOS LEVEL =2 LD=0.250000U TOX =409.000008E-10

+ NSUB=9.618740E 414 VTO=0.838473 KP=4.551000E-05 GAMMA =0.2116

+ PHI=0.6 UO=539 UEXP=0.102074 UCRIT=93907.4

+ DELTA=1.62282 VMAX=76566.1 XJ=0.250000U LAMBDA =4.954671E-03

+ NFS=1.086360E+ 12 NEFF=1 NSS=1.000000E + 10 TPG = 1.000000

+ RSH=27.530000 CGDO=3.166085E-10 CGSO=3.166085E-10 CGBO=4.061267E-10
+ CI=8.657000E-05 MJ=0.796110 CISW =4.985600E-10 MJSW =0.342724 PB=0.800000
*

*

.MODEL pfet PMOS LEVEL =2 LD=0.250000U TOX =409.000008E-10

+ NSUB=1.124300E+ 16 VTO=-0.848423 KP=2.094000E-05 GAMMA =0.7236

+ PHI=0.6 U0O=265 UEXP=0.294641 UCRIT=54996.8

+ DELTA =4.886458E-02 VMAX = 100000 XJ=0.250000U LAMBDA =5.144312E-02

+ NFS = 1.198081E+ 12 NEFF=1.001 NSS=1.000000E+ 10 TPG= —1.000000

+ RSH=66.580000 CGDO=3.166085E-10 CGSO=3.166085E-10 CGBO=4.274259E-10
+ CJ=3.208700E-04 MJ=0.592940 CJSW =3.066600E-10 MJSW =0.294696 PB=0.800000
*

.end
Shunting Synapse

36
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** SPICE file created for circuit ssyn
** Technology: scmos

*%

** NODE: 0 = GND

** NODE: 1 = Vdd

** NODE: 2 = Error

MO 0 100 101 0 nfet L=2.0U W=10.0U
M1 100 100 0 O nfet L=2.0U W=5.0U
M2 0 102 100 0 nfet L=2.0U W=10.0U
M3 100 103 104 0 nfet L=2.0U W=10.0U
M4 101 0 105 1 pfet L=11.0U W=5.0U
M35 0 104 0 0 nfet L=10.0U W=10.0U
M6 0 1 104 0 nfet L=2.0U W=35.0U

M7 102 106 1 0 nfet L=2.U W=20.0U
M8 0 107 102 0 nfet L=2.0U W=5.0U
M9 0 102 0 0 nfet L=10.0U W=10.0U
M10 100 108 1 1 pfet L=2.0U W=5.0U
M11 0 109 102 0 nfet L=2.0U W=5.0U
M1i2 1 108 108 1 pfet L=2.0U W=5.0U
M13 110 106 1 0 nfet L=2.0U W=10.0U
M14 0 111 110 0 nfet L=>5.0U W=5.0U
M15 0 110 0 0 nfet L=10.0U0 W=10.0U
M16 0 109 110 O nfet L=2.0U W=5.0U0
M17 108 110 112 0 nfet L=2.0U W=10.0U
** NODE: 111 = m2

C0 110 0 43F

** NODE: 110 = 4
C1 109 0 23F

** NODE: 109 = ml4
C2 108 0 41F

** NODE: 108 = !5
** NODE: 106 = ml

C3 107 0 22F
** NODE: 107 = 14
C4 105 0 16F
** NODE: 105 = 120
C5 104 0 39F

** NODE: 104 = 18
** NODE: 103 =17
C6 10 89F

** NODE: 1 = Vdd!
C7 102 0 50F

** NODE: 102 = mi7
C8 101 0 34F

** NODE: 101 =19
C9 100 0 54F

** NODE: 100 = !6
** NODE: 112 = 125
C10 112 0 14F

** NODE: 0 = GND!
*

* analysis

vin 106 O pulse(0 5 10n 0.2n 0.2n 2.5n 100n)
vdcl 111 0 dc 0.8v

vdc2 103 0 dc 1.2v

vde3 107 0 dc 5.0v

*vdc4 109 0 dc 0.0v

vr 109 O pulse(0 5 50n 0.2n 0.2n 2.5n 100n)
vdc5 105 0 dc 5.0v :

vdc6 112 0 dc 5.0v

Vdd1 0dc5.0v

.options it15=0

.tran 0.1n 150n 0.0n 0.1n

*step vde3 05 .2

.probe v(106) v(110) v(108) v(100) v(104) v(101) v(102) v(109)
*

*

*

.MODEL nfet NMOS LEVEL=2 LD=0.250000U TOX =409.000008E-10

+ NSUB-=-9.618740E+ 14 VTO=0.838473 KP=4.551000E-05 GAMMA =0.2116

+ PHI=0.6 U0=539 UEXP=0.102074 UCRIT=93907.4

+ DELTA=1.62282 VMAX=76566.1 XJ=0.2500000 LAMBDA =4.954671E-03

+ NFS=1.086360E + 12 NEFF=1 NSS=1.000000E + 10 TPG=1.000000

+ RSH=27.530000 CGDO=3.166085E-10 CGSO=3.166085E-10 CGBO=4.061267E-10
+ CJ=8.657000E-05 MJ¥=0.796110 CISW =4.985600E-10 MJSW =0.342724 PB=0.800000
*

*

.MODEL pfet PMOS LEVEL =2 LD=0.250000U TOX =409.000008E-10

+ NSUB=1.124300E+ 16 VTO=—0.848423 KP=2.094000E-05 GAMMA =0.7236

+ PHI=0.6 UO=265 UEXP=0.294641 UCRIT=154996.8

+ DELTA =4.886458E-02 VMAX=100000 XJ=0.250000U0 LAMBDA =5.144312E-02
+ NFS = 1.198081E+ 12 NEFF =1.001 NSS=1.000000E + 10 TPG = — 1.000000

38
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+ RSH=66.580000 CGDO=3.166085E-10 CGSO=3.166085E-10 CGBO=4.274259E-10
+ CJ=3.208700E-04 MJ=0.592940 CISW =3.066600E-10 MISW =0.294696 PB=0.800000
*

.end

Axon Hillock

** SPICE file created for circuit hillock
** Technologh: scmos

*%

** NODE: 0 = GND

** NODE: 1 = Vdd

** NODE: 2 = Error

MO 1100 101 1 pfet L=2.0U W=20.0U
M1 101 100 1 1 pfet L=2.0U W=20.0U
M2 0 100 101 O nfet L=2.0U W=10.0U
M3 100 102 1 1 pfet L=2.0U W=25.0U
M4 0 102 100 O nfet L=2.0U W=25.0U
M5 102 103 1 1 pfet L=2.0U W=10.0U
M6 0 104 102 O nfet L=5.0U W=6.0U
M7 1105 103 1 pfet L=2.0U W=10.0U
M8 105 106 1 1 pfet L=2.0U W=5.0U
M9 1103 107 1 pfet L=2.0U W=5.0U
M10 0 105 103 0 nfet L=2.0U W=10.0U
M11 105 106 0 O nfet L=5.0U W=5.0U
M12 106 103 1 1 pfet L=2.0U W=15.0U
M13 1 108 106 1 pfet L=2.0U W=10.0U
M14 0 109 107 O nfet L=5.0U W=5.0U
M15 107 110 0 O nfet L=2.0U W=10.0U
M16 106 106 1 1 pfet L=5.0U W=5.0U
M17 0 107 0 0 nfet L=10.0U0 W=10.0U
M18 111 106 1 1 pfet L=2.0U W=10.0U
M19 0 107 111 O nfet L=2.0U W=10.0U
M20 111 112 1 0 nfet L=2.0U W=10.0U
M21 0113 111 O nfet L=5.0U W=5.0U
M22 111 105 0 O nfet L=2.0U0 W=5.0U
M23 0 114 111 0 nfet L=2.0U W=10.0U
M24 106 111 0 0 nfet L=2.0U W=20.0U
** NODE: 113 = 3!

** NODE: 114 = 14!

** NODE: 112 = 2!

CO0 111 0 87F

** NODE: 111 = 4!

** NODE: 110 = 16!

** NODE: 109 = 12!

C1 108 0 26F

** NODE: 108 = 15!

C2 107 0 53F

** NODE: 107 = 13!

C3 106 0 132F

** NODE: 106 = 5!

C4 105 0 S9F

** NODE: 105 = 6!

** NODE: 104 = 9!

C5 103 0 68F

** NODE: 103 = 7!

C6 102 0 54F

** NODE: 102 = 8!

** NODE: 0 = GND!

C7 101 0 63F

** NODE: 101 = 11!
C8 100 0 109F

** NODE: 100 = 10!
C9 1 0 296F

** NODE: 1 = Vdd!
*

* analysis

vin 112 0 pulse(1 1.0 10n 400n 90000n 10000n)
vdcl 113 0 dc 1.4v

vdc2 114 0 dc 0.0v

vdc3 108 0 dc 5.0v

vdc4 110 0 dc 0.0v

vdc5 104 0 dc 5.0v

vdc6 109 0 dc 5.0v

Vdd1 0dc5.0v

.options it15=0

.tran 1.0n 100000n 0.0n 1.0n

.step vdc1 050.2

.probe v(112) v(111) v(106) v(105) v(100) v(103) v(102) v(101) v(107)
*

*
*

.MODEL nfet NMOS LEVEL =2 LD=0.250000U TOX=409.000008E-10
+ NSUB=9.618740E+ 14 VTO=0.838473 KP=4.551000E-05 GAMMA =0.2116
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+ PHI=0.6 UO=>539 UEXP=0.102074 UCRIT=93%907.4

+ DELTA=1.62282 VMAX=76566.1 XJ=0.250000U LAMBDA =4.954671E-03

+ NFS=1.086360E+ 12 NEFF=1 NSS=1.000000E+ 10 TPG=1.000000

+ RSH=27.530000 CGDO=3.166085E-10 CGSO=3.166085E-10 CGBO=4.061267E-10
+ CJ=8.657000E-05 MJ=0.796110 CISW =4.985600E-10 MJSW =0.342724 PB=0.800000
*

*
.MODEL pfet PMOS LEVEL =2 LD=0.250000U TOX =409.000008E-10

+ NSUB=1.124300E+ 16 VTO= —0.848423 KP=2.094000E-05 GAMMA =0.7236

+ PHI=0.6 UO=265 UEXP=0.294641 UCRIT==54996.8

+ DELTA =4.886458E-02 VMAX = 100000 XJ=0.250000U LAMBDA =5.144312E-02

+ NFS=1.198081E+ 12 NEFF=1.001 NSS=1.000000E + 10 TPG==—1.000000

+ RSH=66.580000 CGDO=3.166085E-10 CGSO=3.166085E-10 CGBO=4.274259E-10
-+ CJ=3.208700E-04 MJ=0.592940 CJSW =3.066600E-10 MJSW =0.294696 PB=0.800000
*

*
*

.end

Synapse Node Equations

Vo = Ground - Vss (0 Volts) ()]
Vi1 = DC Supply Voltage - Vdd (5 Volts) (€3]
V3 = Vpn(Action Potential) @
V3 = DC Bias Voltage - V15 (0 — 5 Volts) (5)

1 to+T ©)
V== (pt — Ipp — Ip3)dt
L)

| ptotr m
Vs = < (Ips — Ips)dt
5
to
1 to+7 ()
V6 ="t (Ipio — Ipg)dt
6
to
1 to+7 ©)
Vi=-F f (Ip7 — Ipio — Ip1)dt
7
to
Vg = DC Bias Voltage - Vg5 (0 — 5 Volts) (10)
V9 = DC Bias Voltage - Vgis (0 — 5 Volts) (1
1 to-+7 12
Vip = -c—f (Ipi2 — Ip13 — Ip1a)dt
10 to
Vi1 = RESET(H) (Action Potential) ) (13)
1 to+7 14)
Vi =& (Ip1s — Ipi7)dt (Excitatory)
2y
V12 = Vour (Inhibitory PSP) (15)
V12 = Vsomu (0 — 5 Volts DC) (Shunting) (16)
Vi3 = Vour (Excitatory PSP) {an
Vi3 = N/A (Inhibitory) (18)
V13 = Voyr (Shunting PSP) 19
Action Potential
2Vdd t
T 0=t= 3
2Vdd( —-:rl—),%étéT
0, Elsewhere (20)
Axon Hillock Node Equations
Vo = Ground - Vss (0 Volts) (1)
V1 = DC Supply Voltage - Vdd (5 Volts) @
3
vaeL (T4 $ = 51 I)dt ¥
2= C,; J-to i=1 DISE — k21 D11l = iz1 D178 D1
V3 = Vsoua (0 — 5 Volts DC) @

V4 = DC Bias Voltage - Vg1 (0 — 5 Volts) (5)
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1 to+7 (6)
Vs = C_J (p3 + Ips — 1p2 — Ips — Ipp4 — Ipps)dt

Sy

| o7 ™
V¢ = <s (Ip7 + Ips + 1pg — Ipe)dt
V7 = RESET(L) (Action Potential) 8)

{ o+t ©)
Ve =7 (Ip1o — Ipydt

| totT (10)
Vo =5~ (Ip12 — Ipp3)dt

Vip = DC Bias Voltage - Vg (0 — 5 Volts)

1

to+7
Vi = T f " (Ip14 — Ipis)dt

1 to+7 .
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Although the invention has been described with ref-
erence to these preferred embodiments, other embodi-
ments can achieve the same results. Variations and mod-
ifications of the present invention will be obvious to
those skilled in the art and it is intended to cover in the
appended claims all such modifications and equivalents.

What is claimed is:

1. A neural network processing element, a plurality of
which comprise a neural network, said processing ele-
ment comprising: ‘

means for simulating one or more chemical synapses;

means for simulating a neuron soma;

means for simulating one or more dendrites operably

connecting said means for simulating one or more
chemical synapses to said means for simulating a
neuron soma;

means for simulating an axon;

means for simulating an axon hillock operably con-

necting said means for simulating a neuron soma to
said means for simulating an axon:

means for receiving asynchronous signals and provid-

ing said signals to said means for simulating one or
more chemical synapses; and

means for sending asynchronous signals from said

means for simulating an axon.

2. The invention of claim 1 wherein said means for
simulating one or more chemical synapses comprises
means for simulating one or more chemical synapses
selected from the group consisting of excitatory synap-
ses, inhibitory synapses, and shunting synapses.
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3. The invention of claim 1 wherein said means for
simulating one or more chemical synapses comprises
means for simulating one or more presynaptic regions.

4. The invention of claim 1 wherein said means for
simulating one or more chemical synapses comprises
means for simulating one or more post synaptic regions.

5. The invention of claim 1 additionally comprising
bias adaptation network means for dynamically control-
ling an operational parameter of said means for simulat-
ing an axon hillock, said operational parameter selected
from the group consisting of a threshold/delay level, an
action potential pulsewidth level, and a refractory per-
iod.

6. The invention of claim 1 additionally comprising
bias adaptation network means for dynamically control-
ling an operational parameter of said means for simulat-
ing a chemical synapse, said operational parameter se-
lected from the group consisting of a current amplitude,
a current duration, and a delay period.

7. The invention of claim 1 wherein said means for
sending signals comprises means for sending asynchro-
nous pulsed signals.

8. The invention of claim 7 wherein said means for
sending asynchronous pulsed signals comprises means
for varying threshold/delay, pulsewidth, and refractory
period of said asynchronous pulsed signals.

9. The invention of claim 1 additionally comprising
asynchronous reset means for returning said processing
element to a set of initial conditions.

10. A method of processing signals asynchronously
comprising the steps of:
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a) receiving one or more asynchronous action poten-
tial signals;

b) providing the action potential signals to one or
more chemical synapse simulation means;

¢) modifying the amount of energy stored in a neuron
soma simulation means according to the action
potential signals provided in step b); and

d) sending an asynchronous action potential signal
from axon hillock simulation means according to
the amount of energy stored in the neuron soma
simulation means.

11. A method of processing asynchronous signals, the

method comprising the steps of:

(a) simulating one or more chemical synapses;

(b) simulating a neuron soma;

(c) simulating one or more dendrites operably con-
necting the simulated chemical synapses to the
simulated neuron soma;

(d) simulating an axon;

(e) simulating an axon hillock operably connecting
the simulated neuron soma to the simulated axon;

(f) receiving asynchronous signals and providing the
signals to the simulated chemical synapses; and

(g) sending asynchronous signals from the simulated
axon.

12. The method of claim 11 wherein the step of simu-
lating one or more chemical synapses comprises the step
of simulating one or more chemical synapses selected
from the group consisting of excitatory synapses, inhibi-
tory synapses, and shunting synapses.
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13. The method of claim 11 wherein the step of simu-
lating one or more chemical synapses comprises the step
of simulating one or more presynaptic regions.

14. The method of claim 11 wherein the step of simu-
lating one or more chemical synapses comprises the step
of simulating one or more post synaptic regions.

15. The method of claim 11 additionally comprising
the step of providing a bias adaption network for dy-
namically controlling an operational parameter of the
simulated axon hillock, the operational parameter se-
lected from the group consisting of a threshold/delay
level, an action potential pulsewidth level, and a refrac-
tory period.

16. The method of claim 11 additionally comprising
the step of providing a bias adaption network for dy-
namically controlling an operational parameter of the
simulated chemical synapses, the operational parameter
selected from the group consisting of a current ampli-
tude, a current duration, and a delay period.

17. The method of claim 11 wherein the step of send-
ing asynchronous signals comprises the step of sending
asynchronous pulsed signals.

18. The method of claim 17 wherein the step of send-
ing asynchronous pulsed signals comprises the step of
varying threshold/delay, pulsewidth, and the refrac-
tory period of the asynchronous pulsed signals.

19. The method of claim 11 additionally comprising
the step of returning to a set of initial conditions by

asynchronous reset.
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