©ASE 2014

2014 ASE BIGDATA/SOCIALCOM/CYBERSECURITY Conference, Stanford University, May 27-31, 2014

Exploring Netflow Data using Hadoop

X. Zhou', M. Petrovic?,T. Eskridge®,M. Carvalho* X. Tao®
Xiaofeng Zhou, CISE Department, University of Florida
Milenko Petrovic, Florida Institute for Human and Machine Cognition
Tom Eskridge, Florida Institute for Human and Machine Cognition
Marco Carvalho, Florida Institute for Human and Machine Cognition
Xi Tao, CISE Department, University of Florida

xiaofeng@cise.ufl.edu, mpetrovicQihmec.us, teskridge@ihmec.us, mcarvalho@ihme.us, xtao@cise.ufl.edu

ABSTRACT

Analyzing network flows is challenging both because
of the complexity of interactions that it captures,
but also because of the sheer volume of the data
that can be captured from routers and monitors in
large networks. Hadoop is a popular parallel pro-
cessing framework that is widely used for working
with large datasets. However, there is a lack of infor-
mation about effective uses of Hadoop on NetFlow
datasets. Typically, research publications focus on
presenting results of work built on top of Hadoop,
rather than enlightening about effective uses of the
popular framework. In this paper we make a first
step in achieving that goal. We identify basic tasks
making up any exploratory analysis process of netflow
datset, describe their realization in Hadoop frame-
work and characterize their performance in two com-
monly used Hadoop deployments.

I INTRODUCTION

NetFlow is a popular protocol for reporting summary
metrics from network routers. It is implemented by
virtually all existing router hardware. Netlow metrics
have been used extensively for network monitoring
and administration. There has been a slew of research
into using NetFlow in cyber security domain for in-
trusion detection and forensics as well as anomaly
detection. Key advantage of using NetFlow metrics
over statefull packet inspection and capture is signif-
icantly reduced data requirements since packet con-
tents are not examined. Moreover, NetFlow provides
summary metrics of packet flows instead of traces of
individual packets. Previous research has shown that
this representation is sufficient for a wide variety of
applications.

While the size of the NetFlow data is significantly
reduced compared to statefull packet processing, the
amount is still far from negligible. For example, pub-
lic NetFlow datasets generated from major Internet
backbones can range in terabytes for even just a sin-
gle hour. Similarly, routers in large enterprises and
university campuses can generate significant amounts
of NetFlow data. Performing any kind of exploratory
analysis on this volume of the data, thus, precludes
using desktop-class or non-parallel analytic tools. Typ-
ically, such analysis needs to be limited to a smaller
fraction of a dataset and custom solutions are devel-
oped to perform this analysis. Sampling is another
alternative to reduce the size of the data. Both of
these techniques reduce the fidelity, which poses a
problem in detecting low volume anomalies and at-
tacks. Following exploratory analysis, sophisticated
statistical machine learning is often used to create
traffic classifiers. This process is highly computation-
ally expensive on large data sizes.

Hadoop is a popular batch-oriented data parallel frame-
work. It implements MapReduce computation pat-
tern, originally developed at Google [1]. Hadoop has
been widely used for Big Data analysis in a variety of
domains. One of the key strengths of Hadoop is sim-
ple programming model, and ability to use commod-
ity hardware for scalable and repliabe data process-
ing. Moreover, the framework is Java-based which
makes it easy to deploy on a variety of platforms.

A vast majority of network intrusion detection sys-
tems based on NetFlow is targeted towards real-time
detection of anomalies and attacks. However, there
is a lack of scalable tools for exploratory analysis of
NetFlow data, which, typically preceeds development
of real-time classifiers.

While it is possible to use Hadoop “out-of-the-box”
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for analyzing NetFlow datasets, as we show, the struc-
ture of NetFlow data results in under-utilization of
resources in this case. The main contributions of this
paper are

e Evaluation of Hadoop for exploratory analysis
of NetFlow datasets on large multicore server
and Amazon Cloud

e Efficient representation for NetFlow data

e Characterization of frequent MapReduce pat-
terns for exploratory analysis of NetFlows

Our results indicate that Hadoop can be an effective
platform for exploratory analysis of NetFlow data.
The rest of the paper is organized as follows: in
the next section, we give additional background on
Hadoop framework, relevant specifics of NetFlow pro-
tocol and widely used CAIDA dataset. We then briefly
overview the related work in section [[TI] In section[[V]
we detail structure of typical exploratory analysis as
well as give an example of identifying a particular
network attack pattern. We provide a thorough eval-
uation of these patterns in two different environments
in section [V] Finally, in section[VI] we summarize the
main results and outline the future work.

II BACKGROUND

In this section we provide detailed information about
Apache Hadoop [[] and NetFlow data.

1 APACHE HADOOP

Hadoop consists of two main components: a failure-
tolerant distributed file system (HDFS) that can be
deployed across thousands of commodity machines
and a parallel processing framework implementing

the MapReduce [1] paradigm. To illustrate how Hadoop

works, Figure [1| shows the typical data flow of a sim-
ple counting words example. Here suppose we have
a file “textfilel” in HDFS which contains some text,
and we want to calculate the count of each word in
the file. We can see that HDFS uses two blocks to
store file “textfilel”. To do the counting, Figure
shows: first the input text file is split to two map-
pers, where each mapper parses their assigned por-
tion of the text, then emits <key,value>pairs. Then
Hadoop framework will shuffle the output of map-
pers, sort it, and partition the result by key and gen-

Thttp://hadoop.apache.org/

erate <key,list(values)>pairs. Finally, the two reduc-
ers will process the <key,list(values)>pairs, i.e., sum
up all the values in the list, and output the result to
their different files. And we only implement the map-
per code and reducer code, Hadoop will take care of
orchestrating mappers and reducers and sorting the
output of mappers, i.e., the intermediate results in a
efficient way.
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Figure 1: Typical data flow of the word counting
MapReduce job

An interesting note about HDF'S is that files in HDFS
are stored in blocks of large size: the default HDFS
block size is 128 MB. This is because HDF'S is design
to handle large files, and for every block of a file, the
namenode, which manage all the meta-data of files in
HDFS, will need to keep record of this. Bigger block
size can help reduce the workload of namenode, and
reduce the network load if a distance host is request-
ing data from a local host in a cluster for big files.
Block size will also affect the number of mappers in a
MapReduce (MR) job because it is the upper bound

|
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of split size, which will be used by Hadoop to split
input files into fragments and allocate to mappers.

2 NETFLOW

The NetFlow format data set that we use in this pa-
per, The CAIDA, abbreviation for “The Cooperative
Association for Internet Data Analysis”, Anonymized

a serialization format. Our approach, however, is to
store NetFlow records, without packet content, us-
ing Hadoop SequenceFiles. In addition, we focus on
investigating efficiency of exploratory analysis of Net-
Flow traces, as opposed to a computing fixed set of
metrics.

In [9], the authors compare two different frameworks
that use MapReduce processing paradigm: Hadoop

Internet Traces 2012 Datasetﬂ is collected from CAIDA#nd Disco, which is a Python-based framework. They

monitors on high-speed Internet backbone links. The
original data set is in plain text format, and each
line represents a record of several fields separated by
white space. Each record has a fixed size of 150 bytes,
with white space separating each field and large num-
bers abbreviated with suffix of ‘M, ‘G’. Table[I]shows
some of the fields that are used in this paper.

Field name
Date flow start
Duration
Proto
Src IP Addr:Port 63.35.127.29:15231
Dst IP Addr:Port 229.63.245.121:9000

Packets 2
Bytes 92 M

Example value
2010-07-04 21:43:43.944
29.1
TCP

Table 1: Some of the fields in a record and example
values (‘proto’ is short for ‘protocol’, ‘sr¢’ for ‘source’
and ‘dst’ for ‘destination’)

III RELATED WORK

While Hadoop has been used widely for various large
scale data analysis tasks, there have been only a few
studies of using Hadoop to analyses NetFlow records.
Most of such work focuses on describing tools or anal-
ysis developed on top of Hadoop, without providing
much insights into how to effectively use Hadoop plat-
form for NetFlow analysis [2H6]. Majority of other
work on NetFlow record analysis are attempting to
create real-time systems and do not use Hadoop [7].

In [§], authors develop a tool that uses Hadoop to
compute a predetermined set of metrics over full packet
traces as captured by libpcap. The authors extend
Hadoop to allow storing and processing of packet
traces in the format as used by libpcap. We chose
to focus on NetFlow records only. In addition, we
investigate effectiveness of SequenceFile, a key-value
format commonly used to store data in Hadoop, as

%http://www.caida.org/data/passive/passive_2012_
dataset.xml

compare the frameworks in terms of efficiency of Net-
Flow representation as well as processing performance.
The authors identify Disco as a higher performance
platform. Our work focuses on identifying and eval-
uating building blocks of any exploratory analysis of
NetFlow records using MapReduce paradigm, and
Hadoop in particular. In addition, we examine use
of SQL to express the analysis and evaluate it on
Amazon Cloud platform.

IV USING HADOOP AND HIVE TO AN-
ALYZE NETFLOWS

Typically, any interesting record of NetFlow data will
be very large. To understand the structure of such
large datasets, exploratory analysis is used. One of
the characteristics of exploratory analysis, is that it
is very data intensive, but not very computationally
intensive. Hadoop platform is especially suitable for
this type of analysis.

SQL is widely used for managing data in relational
database management systems, it is simple and easy
to learn, and used by many database. Hive provides
SQL utility to Hadoop

In this section we focus on how exploratory analysis of
large NetFlow dataset is done using Hadoop and how
common types of analysis are expressed effectively in
MapReduce and SQL.

1 DATA REPRESENTATION

Routers generate NetFlow data in plain text format
(see Section . The main advantage of plain text
format is its simplicity and readability. However, this
comes at a cost in terms of storage and parsing. Fig-
ure Plillustrates the transformation from text data to
binary data and to SequenceFile format in Hadoop.
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Some fields of a record in NetFlow data
(in plain text)

SourcIP  Protocol DestIP Bytes
60.238.198.126  ICMP 11.39.201.240 14500

TimeStamp
2010-07-04 21:43:43.945

Binary representation of the field

long 4 bytes 4 bytes 4 bytes long

SequenceFile format in HDES

value

key

Figure 2: Transform the text representation of Net-
Flow records into binary representation, and store
them in HDFS as SequenceFile format. The fields of
a record are stored as the value in the key/value pairs
in SequenceFile format

Since storing plain text data can be inefficient in
terms of space utilization, we convert text represen-
tation to binary and store it using Hadoop Sequence-
Files. Structure of SequenceFile is shown in Figure[2}
Since SequenceFile consists of key/value pairs, it is
simple and efficient to parse and MapReduce frame-
work can use it as input/output format.

SequenceFile has three serialized on-disk formats: un-
compressed, value-compressed and block-compressed,
which combines several values together before apply-
ing compression. By taking advantage of Sequence-
File, the size of NetFlow records can be further re-
duced by simply switching to one of the compressed
serialization formats. Compression is often beneficial
in reducing disk I/O which is often the bottleneck for
data-intensive mapreduce jobs—typical of exploratory
analysis. Both simplicity and repetitiveness of Net-
Flow records make it a good candidate for compres-
sion. Compression can provide a better balance be-
tween the CPU utilization and disk utilization, as we
show in the next section, and also can reduce the size
of data transferred over the network between nodes
of Hadoop clusters.

Similar to SequenceFile in Hadoop, Hive uses Record
Columnar File(RCFile), which is flat file consisting
of binary key/values and determines how to store re-
lational tables in distributed systems and can also be
compressed.

2 FILTERING AND COUNTING

Exploratory analysis typically involves parsing the
raw data into features and computing simple statis-
tics (e.g., totals and distributions) across some sub-
set of the features or for some metrics (e.g, record
counts) even across the full dataset. Filtering and
counting are, thus, the basic building blocks for com-
puting such statistics.

Algorithm [T does a very simple filtering and counting
task, yet offers very useful and fundamental analysis
on the NetFlow data set. We can use it to count the
percentage of the different protocols used among the
network, activeness of a set of specific nodes, or just
filtering out records that we need by directly output
the records in the algorithm.

Algorithm [I] shows the skeleton of a basic filtering
and counting algorithm expressed in MapReduce for
both NetFlow records and text based records using
binary representation described above.

For example, using Algorithm [I] we count the num-
bers of records in the dataset or the number of records
containing specific fields, such as records that uses
the TCP protocol. To do this, we just need to mod-
ify the condition in line 4 to “record has ‘TCP’ in the
protocol field” and emit the key as “TCP”.

Algorithm 1 Basic filtering and counting

Map phase
1: function MAP(inKey inkey, inValue record)
2: Parse the record to get each fields of the
record b
if record has the feature we need then
emit(key, 1)
end if
end function

Reduce Phase

7: function REDUCE(inKey inkey, inValues
values)
8: sum < 0
9: for each value in values do
10: sum < sum-+tvalue
11: end for
12: ouput(inkey, sum)
13: end function
]
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Algorithm 2 Aggregation

Map phase

1: function MAP(inKey inkey, inValue record)

2: Parse the record to get each fields of the
record

3: emit(records.Sourcel P + label
records.BytesTrans ferred)

4: emit(records.DestinationI P + label : destip,
records.BytesTrans ferred)

5: end function

srcip,

Reduce Phase

6: function REDUCE(inKey inkey, inValues
values)

7 sum < 0

8: for each wvalue in values do

9: sum < sum-+value

10: end for

11: ouput(inkey, sum)

12: end function

Going beyond computing a single metric for Net-
Flow attributes (e.g., total bytes per protocol), we
can also compute multiple metrics to find specific
patterns. For example we can compute total traf-
fic volume incoming and outgoing from a node by ag-
gregating bytes transmitted from destination IPs and
source IPs simultaneously in Algorithm [2l Comput-
ing multiple metrics simultaneously, reduces amount
of data that needs to be read in the map phase. How-
ever, it also increases the size of intermediate results
that Hadoop needs to store between Map and Reduce
stages.

Since MapReduce jobs are typically run in clusters,
where mappers are run on different nodes that are far
apart, communication cost may be expensive. And
Hadoop needs to write the map output to disk and
shuffle the outputs of all mappers globally, it will help
reduce this cost significantly if we can reduce the out-
put of mappers. Here is a specific scenario, if we are
trying to get the volume of data flow from each IP
address, for a mapper it may output two key/value
pairs (127.0.0.1, 100 bytes), (127.0.0.1, 200 bytes)
from two records it has processed and write the two
key/value pairs to disk. In this case we can do a
reduce job locally on this mapper, i.e., combine the
two key/values pairs in to one (127.0.0.1, 300 bytes)
in the map phase, thus the mapper will only write
one key/value pair. This way we can reduce the size
of intermediate data between map phase and reduce
phase. This kind of local reducers are called “com-
biners” and can be used to scale up aggregation.

While in Hive, suppose table is our created table and
sourceip is a tuple inside the table and is of string
type, which gives the source IP string. And here are
the similar SQL queries that does the counting job:

e Record-counting Query

SELECT COUNT(*) FROM table;

e Aggregation Query(Group size of 1 only)

SELECT SUBSTR(sourceip, 1, instr(sourceip, ‘.”) -1) ,
SUM(bytes) as cntbytes FROM table GROUP BY SUB-
STR(sourceip, 1, instr(sourceip, ‘.”) -1);

For most queries, Hive compiler will generate MapRe-
duce jobs accordingly, which will be submitted to
Hadoop be executed.

3 COMPUTING TOP-K

Another common and important analysis is to find
the extreme ‘points’ in the data set. For example
we may want to get the top 10 popular IPs among a
subnet with the most connection number or largest
data volume flow.

Algorithm [3]shows how to find the top-K records that
have for example, most data volume flow from a spe-
cific host IP. The map phase is the same as former
two algorithms, but in the reduce phase we keep a
sorted array list of the top-K records we found so
far. And we update the list as the reducer is fed with
output from mappers. When the reduce finishes, the
reducer’s top-K list is the final top-K list we need. It
is worth noting that the initialization and finalization
of the array list are done only once before and after
the multiple calls to reduce function, and the reducer
only need to store a array of size K to run, where K is
often a small number. And the algorithm only need
to scan through the data set only once. This is yet
another common important analysis.
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Algorithm 3 top-K
Map phase
1: function MaPp(inKey inkey, inValue record)
2: Parse the record to get each fields of the
record
3: if record ’s Destination IP is 255.255.255.255
then

: emit(records.Sourcel P, records.Bytes)
5: end if
6: end function

Reduce Phase
7: create list(topk)

8: function REDUCE(inKey inkey, inValues
values)

9: sum < 0

10: for each value in values do

11: sum < sum-+tvalue

12: end for

13: if sum > smallest(list(topk)) then

14: list(topk).remove(smallest(list(topk)))

15: list(topk).add(sum)

16: end if

17: end function
18: Finalize: ouput list(topk)

However, it is notable that we need to use one reducer
to get the top-K because of shared state. In clus-
ter cases where we are dealing with huge amounts
of records, this approach of one job with only one
reducer is not scalable due to the fact that only one
reducer will have to process outputs from many map-
pers.

A plausible solution would be to chain multiple find-
ing top-K Algorithm [3]jobs, and only run the last one
job with only one reducer. More specifically, for first
job we run with multiple reducers to get the top-K
records of each reducer. The top-K records that we
need would be among the output of first job, but
the size of the output of the first job would be sub-
stantially smaller than the output of the mappers in
the first job, which contains a key/value pair for ev-
ery record in the original data set. Then for second
job take the output of the first job as input and run
the algorithm again with only one reducer. Since K
is normally a very small number in comparison to
the number of records in the data set we are dealing
with, the output of the first job would be very small
in most cases and the second job would be reason-
ably fast enough. Anyway if the output of first job is
still too big for one reducer, we can always have third
job or even more, as long as we only set the reducer

number to one in the last job.

Similarly using SQL, we can compute top-10 source
IPs wth largest data flow using the SQL query be-
low:(same assumptions are made as in former sub-
section)

e Top-k Query

SELECT sourceip, sum(bytes) AS cntbytes FROM ta-
ble GROUP BY sourceip ORDER BY cntbytes DESC
LIMIT 10;

4 PATTERN DISCOVERY

We can do more complex analysis such as pattern dis-

covery on NetFlow data set with the three algorithms

explained above. One typical example is the watering

hole attack pattern, which is explained in Figure
bait

t[l,lOV \

target: target: targets

t[lOON L /

controller

Figure 3: Watering hole attack pattern. Here a pop-
ular website ‘bait’ is compromised by an attacker and
malware is placed. During a relative long time inter-
val [1,100], multiple users called ‘targets’ will access
the bait and download the malware. Then in a short
following time interval, the targets will contact an ex-
ternal service called controller, which is controlled by
the attacker and is rarely accessed before.

So our interest lies in identifying patterns such as
the watering hole attack in the NetFlow data set in
order to defend against such attacks. For this specific
task, we can run several combinations of the counting,
aggregation and finding top-k operations to complete
our goal. Algorithm [@] show the outline of identifying
possible watering hole attack patterns, which consists
of three basic steps: 1. find candidate controllers; 2.

|

ISBN: 978-1-62561-000-3



©ASE 2014

2014 ASE BIGDATA/SOCIALCOM/CYBERSECURITY Conference, Stanford University, May 27-31, 2014

find candidate target sets; 3. find candidate baits.
The algorithm has five main MapReduce (MR) jobs
of the basic three algorithms.

It is worth noting that we can set several thresholds
in Algorithm [ to filter out records. For example,
in MR job 2, we can choose the top-K with highest
spikes, or we can set a threshold on the spike/average
ratio. And in MR job 5 the threshold of percentage
to filter out candidate baits IP is also configurable.

Algorithm 4 Finding possible watering hole attack
patterns in NetFlow data set
Step 1: Find candidate controllers

1: MR aggregation job 1: Aggregate by destination
IP + short time interval, and get count of incom-
ing connections to the destination IP during the
short time interval.

2: MR top-k job 2: For each destination IP, get the
histogram of counts against short time interval
series, and output those destination IPs + short
time intervals that have the top-K highest spikes
in counts, as candidate controllers.

Step 2: Find candidate target set of each candi-
date controllers

3: MR filtering job 3: For each candidate controller
found in Step 1, find those source IPs in the orig-
inal dataset that have connections to the candi-
date controller during its short time intervals ac-
cordingly, as candidate target set of that candi-
date controller.

Step 3: Find candidate baits, identify possible
watering hole attack patterns

4: MR filtering job 4: With the candidate target set
found in Step 2, find those IPs that have con-
nections to IPs in candidate target set before the
short time intervals, as candidate baits.

5: MR counting and filtering job 5: For each candi-
date bait found in MR job 4, count the number
of different IPs that it has connection to in each
candidate target set. If the candidate bait has
connection to more than a certain threshold per-
centage of the candidate target set of a candidate
controller, output the
(candidate controller, candidate bait, candidate
target set)
as possible watering hole pattern.

V EVALUATION

We evaluate the performance of Hadoop for NetFlow
data analysis in three contexts: MapReduce-based
exploratory analysis on large multicore server, (2)
SQL-based exploratory analysis in a public cloud (Ama-
zon Web Services), and (3) pattern discovery. We
chose these contexts as representative of typical ap-
proaches to using Hadoop for NetFlow analysis based
on published literature [7]. In Section [[V] we identify
building blocks used for analyzing NetFlow data and
here we examine their the performance. As such, we
expect the results here provide insight into Hadoop
performance across broad range of NetFlow analysis.

1 METHODOLOGY

Our multicore evalution platform consits of a large
server with two AMD Opteron 6272Q1.4GHz pro-
cessors, each with 16 cores and 64GB of RAM. The
server also has eight 3TB@7200rpm hard disk drives
(HDD). The operating system is Linux x64 3.11.6
(Fedora 19), and we perform all experiments using
Apache Hadoop 2.2.0. We configure Hadoop frame-
work to allow a maximum of 30 concurrent tasks and
up to 1GB of RAM per task. For all the experiments,
HDFS is configured to use all available disks and to
use a fixed block size of 128MB for all data.

We use Amazon Web Services (AWS) as a second
evaluation environment. All the experiments are per-
formed using a cluster of three node, with one as
the master. The type of each node in the cluster
is M1.large, each with 4 virtual cores and 15GB of

RAM. Similar to multicore environment, Apache Hadoop

2.2.0 is used. We leave all Hadoop configuration un-
changed as set by Amazon.

For all experiments, we use CAIDA NetFlow dataset.
The original dataset is provided in NetFlow format
which is in plaintext format with fields are separated
by white space.

We measure the performance in terms of time for
query execution.

2 LARGE MULTICORE SERVER
2.1 DATA REPRESENTATION
In this experiment, we evaluate the effect of data

representation on the framework performance. We
use record counting as a type of analysis that lacks

|
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any computation overhead, and thus it can be used
to measure framework bandwidth. Here we run the
record-counting program based on Algorithm[I] which
simply traverse the data set once in map phase, and
use one reducer in reduce phase to collect all the out-
put from map phase and get the count of records.

Figure [] shows the running time of using record-
counting program on different size of data and with
different NetFlow serializations.

We can see from Figure {4] that, for example, a 20GB
plain text data set can be reduced to only 14.6%
(2994MB) when stored as COMPRESSEDSEQUENCE-
FiLE. And for SEQUENCEFILE, which we implemented
by converting each field of the records to Sequence-
File format data as illustrated in Figure [2] is around
half the size of the original data set. So we can re-
duce the size of the original text data set by around
a significant 85% with the COMPRESSEDSEQUENCE-
FivLeformat. Thus, relatively simple and repetitive
nature of NetFlow text format makes this format ami-
able to compression, significantly reducing the stor-
age footprint, ans consequently, increasing the rate
at which records can be transferred to main memory.

However, the downside of a more compact represen-
tation from compression is increased processing time
due to decompression processing and an additional
layer of expensive parsing needed when using COM-
PRESSEDSEQUENCEFILE. In the Figure ] we quan-
tify the added overhead due to use of compression.
We measuring the running time of record-counting
program. We can see that for data set smaller than
5GB, the running time on text data is faster. This
is because:(1) savings in I/O due to data size is too
small to compensate for the overhead of decompres-
sion time; (2) for COMPRESSEDSEQUENCEFILEdata
set, the data size is 748MB, thus Hadoop only uses
7 mappers for the job due to the 128MB block size
limit per mapper. This results in decreased paral-
lelism, which is also why the running time on SE-
QUENCEFILEdata is almost the same as on text data.
On the other hand, for data size larger than 10GB,
we can see that the running time on COMPRESSEDSE-
QUENCEFILEdata is shorter than both on SEQUENCE-
FiLeformat data and text data. This is when the
data size starts to play the major role, even at the
cost of compensating the decompression cost of the
COMPRESSEDSEQUENCEFILE. From this experiment
we can see the benefits of COMPRESSEDSEQUENCE-
FiLEis that it not only reduce the text data size sig-
nificantly.

In the rest of the experiments in this section, we use

[JSize of converted SequenceFile format data (MB)

fmmSize of converted compressed SequenceFile format data(MB) 12000

266

-@-Time on plaintext data(s)

250 Time on SequenceFile data (s) 10000

-e-Time on compressed SequenceFile data (s)
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Figure 4: Running time of record-counting pro-
gram on different serialization schemes for NetFlow
records. We observer that only for significant amount
of data, 5GB in this case, it is worth using more so-
phisticated serialization formats.

SEQUENCEFILEserialization.

2.2 AGGREGATION

In this section we are interested in the effects of dif-
ferent number of reducers on the computing top-K
results scenario. As explained in former section, we
have to run one reducer to get top-K results, but that
contradicts the parallelism we want. So the solution
is to chain multiple jobs, with only last job using one
reducer. Here we use chain 2 jobs and vary the num-
ber of reducers the first job to explore the difference
it make.

Figure [5| shows the running time of computing top
10 source IPs with the largest data volume on the
5 GB data set with different number of reducers in
the first job. We can see that the running time with
only 2 reducer is the longest, but as number of re-
ducers grow, the running time gets shorter. Because
the first job runs faster with more reducers. However
as number of reducers continues to grow after 8, the
running time get longer, this is due to the overhead
of launching reducers. This experiment shows that
for computing top-K on large data set, it is necessary
to avoid running only one job with only one reducer,
but we may need to set the number of reducers prop-
erly with respect to the limitations of resource we
have. The optimal setting for number of reducers de-
pends on the workload of reducers and the system’s
capacity. A plausible setting can be found at Hadoop

|
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Figure 5: Running time of computing top 10 source
IPs with the largest data volume, with different num-
ber of reducers. We add the one job approach as
comparison.
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2.3 SCALING UP AGGREGATION

In this experiment we evaluate the effect combiners
make on aggregation operations. Here we choose to
aggregate by source IPs and get the data volume of
each IP. Similarly from former test with different data
formats in Figure[d] we choose to run on SEQUENCE-
FiLedata set.

Figure [6] shows the running time to aggregate source
IPs (or prefix of IPs i.e., IPs that have prefix of “127.0”,
or IP sets “127.0.x.x”) and get the sum of data flow
from those IPs (or IPs sets with the same prefix).
This can be used to get total data volume flow from
subnets. We change the aggregation group size by
varying the number of fields in the IP prefix. To
demonstrate the effect of combiners, we also run the
test with combiners to do mapper-local reduce job.
We can see that with combiner, the running time de-
crease by 14% in the prefix=2 case. So combiners
does help in this case, and combiners can make the
performance worse if the extra cost of running com-
biners does not exceeds the benefits of reduce map-
pers’ output when there are not so many duplicate
keys to combine.

3http://wiki.apache.org/hadoop/HowManyMapsAndReduces
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Figure 6: Running time of aggregation by source
IPs(or prefix of IPs).

3 AMAZON CLOUD

We perform similar experiments on SQL from Ama-
zon Web Service and evaluate the results. Experi-
ment environment is explained in former subsection

Methodology [I}

In this part we evaluate SQL on different data for-
mats: text format, RCFile format and compressed
RCFile format, by using the SQL record counting
program in former section on different data set size
and compare the results. Similar to the experiments
above, we get the results as shown in Figure 7}

From Figure [7] we can see that the compressed RC-
File serialization reduces 20GB datset to 5GB, a 75%
reduction. For smaller data set (less than 1024MB),
running time is almost the same for all three types of
files. With larger data sets (larger than 10GB), run-
ning time on compressed RCFile data set is shortest.
These trends are consistent with experiments on the
multicore server.
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Figure 7: Running time of record-counting program
on original plaintext data set, RCFile data set, and
compressed RCFile data set against the size of RCFile
data set and compressed RCFile data set.

VI CONCLUSIONS AND FUTURE WORK

In this paper, we used Hadoop to analyze NetFlow
data and evaluate the efficiency of different data for-
mats and we explored the MapReduce implementa-
tion of several basic yet fundamental analysis of Net-
flow data set. We found that the compact binary
representation in HDF'S using SequenceFile efficient
in reducing space usage and access time for files of big
size, and compressed SequenceFile even more efficient
in both aspects. We also explored the shared state ag-
gregation and experimented with different number of
reducers, and we concluded that shared state aggre-
gation is sensitive to Hadoop setup, and it is impor-
tant to identify correct number of reducers for a par-
ticular job and system resources. We also evaluated
the effects of combiners and concluded that combiners
can help scale up aggregation. We also utilized the
cloud computing service-the Amazon Web Service—
and conducted similar experiments used HiveQL on
RCFile format. We concluded similarly that com-
pressed RCFile is also efficient just as compressed
SequenceFile format.

In future work, we plan to explore more complex anal-
ysis on NetFlow data set using Hadoop, such as net-
work attack pattern mining. We also plan to conduct
such experiments similarly on AWS and explore other
tools that AWS has to offer to NetFlow data analysis.
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