Simulation Study of Human Input Devices in a Variable Gravity Environment for Commercial Space Transportation

Kazuhiko Momose, Troy R. Weekes, and Thomas C. Eskridge

March 5, 2023

Abstract

Commercial spaceflight is an exciting and rapidly growing segment of the space industry. Recent accomplishments by private companies taking non-professional astronauts into space have added additional momentum to the growth of the Commercial Space Transportation (CST) industry. It is expected that increasing numbers of private individuals will participate in commercial orbital and sub-orbital human spaceflight activities as Spaceflight Participants (SFPs). In several circumstances, the SFPs will be launched without the assistance and supervision of professional crew, requiring the SFPs to be able to manage their own safety and emergency procedures. To ensure SFPs’ safety, it is imperative to understand the unique effects of the spaceflight environment, particularly the effects of microgravity on the physio-cognitive capability of SFPs. The goal of this study is to develop general CST design guidelines for control input devices usable in variable gravity with or without a spacesuit. To accomplish this, we conducted an experiment to identify the best physio-cognitive control input logic and mechanisms for human operators in a variable gravity environment. The physiological effects of microgravity were produced by reclining participants in a Head-Down-Tilt (HDT) posture, using the Adaptive Spaceship Cockpit Simulator (ASCS). Participants were asked to perform a Fitt’s target selection task where the size and distance of a target were varied to produce different levels of target selection difficulty according to Fitt’s Law. We tested 27 participants in shirtsleeves in both the upright and HDT conditions using four input devices: (i) a touchpad, (ii) a touchscreen, (iii) a joystick, and (iv) a numpad. We investigated the accuracy of the target selection and response time across the four input devices in the two orientations. The experimental data indicated a significant difference in the target selection performance, and the touchscreen produced significantly more errors than the other devices. We conducted a regression analysis between the target width and the accuracy of target selection to determine the minimum target width required to ensure 95 percent selection accuracy for each type of input device. The approach used in this study allows for the inclusion of speed and accuracy in determining control input size and distance recommendations. This study paves the way for establishing an industry design guide in the growing CST domain.

1 Introduction

Commercial human spaceflight is an emerging and exciting opportunity in the space industry. Virgin Galactic and Blue Origin have successfully completed sub-orbital flights by carrying non-professional astronauts above the Karman line and bringing them back safely. SpaceX has served the Inspiration 4 and the Axiom-1 missions, all-civilian orbital flight missions, by operating the Crew Dragon capsule. These accomplishments accelerated the growth of the Commercial Space Transportation (CST), and more Spaceflight Participants (SFPs) are expected to participate in such commercial spaceflight activities given that planned commercial space stations, including Orbital Reef and the Axiom station, are under development. In order for the CST industry to be sustainable, SFPs’ safety must be ensured, and it is imperative to design cabin architectures and systems (e.g., user interfaces) and develop well-established training protocols by considering the unique effects of the spaceflight environment, particularly the effects of microgravity on the physio-cognitive capability of SFPs. This is more pronounced in some circumstances where SFPs are launched without the assistance and supervision of onboard professional crew and are required to manage their own safety and emergency procedures.

In this study, we aim to develop general CST design guidelines for control input devices usable in variable gravity with or without a spacesuit. This paper presents our experiment to investigate the
best physio-cognitive control input logic and mechanisms for human operators in a variable gravity environment. In the experiment, 27 participants were asked to perform a Fitts’ law target selecting task using four input devices while seating in upright and Head-Down Tilt (HDT) positions.

2 Related Work

2.1 Ground-Based Analogs for Microgravity Simulation

A microgravity environment poses challenges as to the physiological effects on human body, and it is critical to better understand the mechanisms and countermeasures to ensure crew safety and mitigate associated health and operational risks. There are several ground-based analogs, including HDT simulations, which serve as the most promising simulation methods Pandiarajan & Hargens (2020). Whereas 6°HDT bed rest is established as an international standard angle Smith et al. (2011), some literature has explored different angles, including 12° Dayal et al. (2020) and 34° Russomano et al. (2008). Results from two consecutive studies indicated that 15 minutes of 34° HDT treatment could be used to simulate the acute increase in IOP that occurs in microgravity Russomano et al. (2008).

2.2 Effects of Microgravity on Fine-Motor and Cognitive Capabilities

The research work has been done to investigate the effects of microgravity on human fine-motor capabilities by employing different types of tasks as well as experiment testbeds. Holden et al. Holden et al. (2022) compared astronauts’ fine-motor skills in preflight, inflight, and postflight phases employing a touchscreen interface and four types of tasks, including a pointing task. Ciofani et al. Ciofani et al. (2010) employed Fitt’s pointing task with a parabolic flight testbed, suggesting how ergonomics could be changed in altered gravity conditions. In a study done by Doule Doule (2018), human subjects were asked to conduct a docking task using different human input devices in several conditions: (i) garment (i.e., shirt-sleeve or with spacesuit) and (ii) orientation (i.e., upright-seating or 34° HDT).

3 Experiment

3.1 Objectives

We conducted an experiment to test different human input devices employing an HDT environment and the Fitt’s law target selection task. With the Fitt’s law-oriented task and a spaceship cockpit simulator, our study aimed to produce more comparable results of the human input devices and establish the CST industry guidelines in a safer and more cost-effective fashion. Our research question is What is the “best” control input device that allows users to exhibit high performance for a target selection task in upright and HDT orientation conditions?

3.2 Participants

Due to some anticipated risks as well as the simulator architecture, we established a set of inclusion criteria for this experiment: (i) height above 5’0” and below 6’3”, (ii) Weight below 280 pounds, (iii) do not have altered inter-ocular pressure related eyesight conditions, (iv) are not taking medications which might cause drowsiness, (v) do not have blood circulation problems, such as blood clotting disorders, and (vi) are not pregnant. Our study was reviewed and approved by the IRB at Florida Institute of Technology (IRB Number: 22-114).

3.3 Experiment Setting

3.3.1 Adaptive Spaceship Cockpit Simulator

We employed the Adaptive Spaceship Cockpit Simulator (ASCS) Doule (2018), enabling us to run spaceflight simulations in different seat orientations with or without a spacesuit. In the experiment, we employed the 34° HDT inclination angle suggested by Russomano et al. (2008), allowing us to simulate the effects of an acute increase in IOP on human physio-cognitive capabilities and to test different human input devices in a reasonable length of the experiment. The ASCS is equipped with
an adjustable input device platform and monitor arm, allowing us to easily test different types of control input devices in the upright and inclined orientations as well as accommodate a wide range of participants.

3.3.2 Fitt’s Target Selection Task

PsyToolkit was used to implement the Fitts’ target selecting task Stoet (2010, 2017), where the participant moved the cursor to the target and clicked, or touched it with their finger in the case of touchscreen input. The Fitt’s law Fitts (1954) states that the time it takes to move a cursor to an area and select it is a function of the distance to the target and the size of the target, which is described as:

\[
MT = a + b \times \log_2(2D/W)
\]

where \(MT\) is the movement time, \(a\) and \(b\) are constants that are dependent on the input device, \(D\) is the distance to move, and \(W\) is the width of the target. The Fitt’s target selection task was presented via a Raspberry Pi touchscreen display (Raspberry Pi 10.1 inch Touchscreen Monitor), which was mounted on the adjustable monitor arm of the ASCS. Figure X illustrates the Fitt’s target selection used in the experiment. Three distinct ID levels were introduced by manipulating the target width and distance; easy, medium, and hard. In the beginning of each trial, a yellow square appeared from one of the eight possible positions (Figure 1a), serving as a starting point. Once the participants hit the inside of the yellow square, a red target square appeared on the screen (Figure 1b). The participants were instructed to hit the red square as quickly and accurately as possible. After the participants provided an input, the next yellow square was presented in the same manner. The time the participants took to hit the yellow square was not measured, and therefore they were allowed to pause a moment before hitting the yellow square. We employed yellow and red colors to ensure a good level of contrast to the black back screen.

![Image](image1.png)

(a) Initial Positions (b) Target Selection (c) Calculation of Index of Difficulty

Figure 1: The Fitt’s target selection task used in the experiment (Placeholder)

One block contained 40 trials, consisting of 13 easy, 13 medium, and 14 hard trials; during our familiarization session, medium trials were consistently presented. The position of the initial target (i.e., the yellow square) was randomly selected from the eight possible positions, and the target (i.e., the red square) appeared with varied size and distance from the yellow square. In the experiment, the participants did not receive any time or accuracy feedback on their performance, and the target square disappeared once one single input was provided regardless of it being inside or outside of the target square.

3.3.3 Input Devices

Four input devices were tested in this experiment: (i) touchpad, (ii) touchscreen, (iii) numpad, and (iv) joystick. The Apple Magic Trackpad was used as the touchpad, which was connected to the Raspberry Pi touchscreen display via Bluetooth. While presenting the Fitt’s target selection task, the Raspberry Pi touchscreen display served as the touchscreen input device in the experiment. A USB hub (Sabrent 4-Port USB Hub with Power Switches) allowed the numpad (Jelly Comb 2.4G Number Pad) and joystick (Logitech Freedom 2.4 Cordless Joystick) to connect to the Raspberry Pi touchscreen display wirelessly. Velcro tapes were applied to the control device platform of the ASCS and the base
of the touchpad, numpad, and joystick, allowing us to easily adjust the input device configuration and ensure the stability of the input devices during the task in the upright seating and HDT orientations.

3.4 Experiment Design

3.4.1 Independent Variables

We employed a 2 (orientations: upright and HDT) x 4 (input devices: touchpad, touchscreen, numpad, and joystick) x 3 (index of difficulty levels: easy, medium, and hard) within-subject experiment design.

3.4.2 Dependent Variables

Objective measures include: (i) mean Response Time (RT) [ms], (ii) accuracy [%], and (iii) Throughput (TP) [bps]. We measured RT from the moment when the participants hit the yellow square to the timing when they provided one single input after the red square appeared. Accuracy was calculated by counting successful trials in one block across the three ID levels. We computed (TP) using Equation (2):

\[TP = \log_2(D/W_e + 1)/MT \]

where \(W_e \) is obtained by:

\[W_e = 4.133 \times SD \]

where \(SD \) is standard deviation of the distance from the center of the red square to end point coordinates provided by the participants MacKenzie (1992).

3.5 Experiment Procedure

The experiment consisted of the following six sessions: (i) briefing, (ii) familiarization, (iii) first task blocks (Orientation 1), (iv) second task blocks (Orientation 2), and (v) post-experiment questionnaire, and (vi) debriefing. In the beginning of the experiment, the experimenters provided the participants with an overview of the experiment; a 5-10 minute presentation was provided. The presentation covered the objective of the study, experimental flow, and safety instructions. The participants were asked to sign an informed consent at the end of the briefing session. Then, the participants were asked to embark on the ASCS, check the configuration of the input device platform and the monitor, and fasten seatbelts with help from the experimenters. Upon the completion of the safety and comfort check, we turned off lighting in the simulation room and then initiated the familiarization session, where the participants familiarized themselves with the four input devices and a Fitt’s law pointing task. At the beginning of the familiarization session, the participants were asked to don the wearable brain sensing headband. Then, they conducted a series of Fitt’s pointing tasks in the upright seating orientation using all the four input devices, which took approximately 30 minutes. The familiarization session was followed by the two sessions where the participants were asked to conduct the Fitt’s pointing task using the four input devices in the two orientation conditions (i.e., upright-seating and HDT sessions). There were two tracks: Track (a) upright orientation first and Track (b) HDT First. We counterbalanced the order of the two seat orientation conditions and the four input devices.

The Track (a) asked the participants to conduct one block with 40 trials for each of the four input devices (i.e., 4 blocks with 160 trials in total) in the upright-seating orientation first. On completion of the first four blocks, the participants received a 15-minute 34° HDT treatment to simulate the acute increase of IOP. After the HDT treatment, they were asked to conduct another block with 40 trials for each of the four input devices in the HDT orientation. Once the four blocks in the HDT orientation were completed, the seat orientation returned to the upright-seating orientation.

In contrast, the Track (b) provided the participants with the 15-minute 34° HDT treatment first. Then, they were asked to conduct the first four blocks in the HDT orientation. On the completion of the four blocks, the participants were returned to the upright-seating orientation and received a 15-minute recovery treatment. We employed 15 minutes as the length of the recovery treatment under the assumption that the same amount of time was required for body fluid to turn back to its original state. After the 15-minute recovery treatment, the participants conducted another four blocks in the upright-seating orientation.
The two sessions took approximately 90 minutes in total and were followed by the debriefing session. The participants were asked to share their subjective feedback by taking the post-experiment questionnaire, which was presented via the Raspberry Pi touchscreen monitor. The participants filled out the post-experiment questionnaire while seating in the upright orientation. On the completion of the post-experiment questionnaire, the participants disembarked from the ASCS and concluded the experiment.

![Track (a) diagram](image1)

![Track (b) diagram](image2)

Figure 2: Order of Experiment Trials

3.6 Data Analysis

We carried out a three-way MANOVA using R (version 4.2.2) Team et al. (2013); we acknowledged that MANOVA is fairly robust to violations of the normality assumption, and the equal group sizes also helped to relax the homogeneity of variances assumption O’Brien & Kaiser (1985). When appropriate, post-hoc pairwise comparisons were performed. We set the alpha level at 0.05. We analyzed the subjective responses to the post-experiment questionnaire to investigate whether the subjective measures supported the results of our statistical analysis.

4 Results

Due to a technical issue with the Psytoolkit server, we could not collect the Fitts’ performance data from one participant, resulting in a total of 26 participants (Female: 10, Male: 14, Non-binary/Prefer not to say: 2) aged from 18 to 37 years (M: 22.6, SD: 5.21). We ran the three-way MANOVA test, suggesting significant interaction effects of orientations and input devices ($F(9,225)=5.39, p <0.001$), orientations and ID levels ($F(6,98)=2.99, p <0.01$), and input devices and ID levels ($F(18,450)=30.1, p <0.001$). The follow-up univariate analyses were carried out to further investigate the detected interaction effects; in this paper, we reported the follow-up analyses of the interaction effect of orientations and devices for the sake of our following discussion. Aligned Ranks Transformation (ART) ANOVAs Wobbrock et al. (2011) detected the interaction effect of orientations and devices on accuracy ($F(3,575)= 4.90, p <0.05, \eta^2_p=0.0294$) and TP ($F(3,575)= 15.7, p <0.001, \eta^2_p=0.0758$). Post-hoc pairwise comparisons Elkin et al. (2021) were performed; as for TP, there were significant differences between orientations and input devices ($p <0.001$) except for the following combinations: joystick/upright vs. joystick/HDT ($p=0.0613$), touchscreen/HDT vs. touchpad/HDT ($p=0.759$), touchpad/upright vs. touchscreen/HDT ($p=0.986$), touchscreen/HDT vs. touchpad/upright ($p=0.997$), and numpad/upright vs. numpad/HDT ($p=0.844$). An appendix presents a table showing combinations that exhibited significant differences in accuracy. We also attempted to investigate the minimum target size required to ensure 95 percent input accuracy for each type of input device via a regression analysis (Figure 5).
5 Discussion

While the participants exhibited slightly faster \(RT \) values using the touchscreen, more inaccurate inputs were observed (Figure 3). In particular, the participants’ performance was significantly degraded in the HDT condition as the pairwise comparisons suggested a significant difference between touchscreen/upright vs. touchscreen/HDT. The touchscreen required a more envelope of hand and arm motions, which was more pronounced in the HDT orientation where the participants needed to reach forward against the gravitational force. This gravity effect led to the potential physical fatigue in the course of trials, resulting in the more inaccurate inputs. This seems to be supported by the post-experiment questionnaire; 19 participants indicated that the HDT orientation affected their physical ergonomics (“somewhat agree” and “strongly agree”). Although we acknowledge that this is one of the limitations of the current experiment setting as a microgravity simulation study, spaceflights involve different operational scenarios in varied gravity levels, including 1g or hypergravity conditions. Our observation of the higher error rates with the touchscreen highlights the importance of considering the envelope of motions when designing spaceship cabin and passenger seat.

In the post-experiment questionnaire, 5 participants indicated the effect of the HDT orientation on their cognition (“somewhat agree”) whereas the rest of the participants did not report any perceived effect of the HDT orientation (neither agree nor disagree: 6, somewhat disagree: 7, and strongly disagree: 8). Additionally, we received an anecdote indicating that the participant experienced blurred vision during the trials in the HDT orientation. The subjective feedback suggests that our future study should employ additional experiment protocols to enhance the fidelity of the simulation such as...
measuring IOP before/after the HDT treatment and/or presenting simple perception tasks.

Our preliminary regression analysis suggested that the touchpad requires a smaller target size when compared to other input devices in both orientations. The small envelop of hand and arm movement is less susceptible to the orientation and gravity effect, contributing to the high accuracy. Another explanation is their familiarity with the touchpad control; although we provided familiarization session of the input devices, their daily use of a laptop introduced a carryover effect. We should further investigate the learning curve and performance level of a plateau across the input device. Yet, a touchpad-oriented control would be promising given the performance and learnability as well as a limited time of SFP training Peeters (2021).

We also acknowledge our study limitation as to the participants’ demographics, where they appear to possess a good level of physio-cognitive capabilities. Four passengers ranging from 18 to 82 years participated in the first New Shepard human spaceflight Peeters (2021), and we expect future CST activities to accommodate SFPs from a more diverse population.

6 Conclusion

Given the recent successful commercial sub-orbital and orbital human spaceflights, a rapid growth of the CST industry is expected. This requires well-established CST guidelines for cabin systems, including control devices and user interfaces to ensure SFPs’ safety and comfort during a spaceflight. This study was intended to gain insights into the establishment of such design guidelines, and we tested the four input devices in the upright and HDT orientations employing the Fitt’s target selection task. The experimental data suggested a significant difference in the target selection performance between the two orientations, and the touchscreen exhibited more input errors in the HDT orientation. This is most likely because the participants were required to reach forward against the gravity force in the HDT; yet, this should be taken into account in a spaceflight where SFPs are expected to interact with interfaces at a variety of gravity levels. While the HDT orientation appeared to have a more dominant effect on participants’ physical ergonomics, the subjective responses indicated a partial effect on their vision and cognitive ergonomics. To improve the simulation fidelity, our future work should consider employing additional experimental procedures, including measurements of IOP before/after the HDT treatment. In this paper, we also conducted the preliminary regression analysis aiming at determining the minimum target size to ensure 95% accuracy across the input devices. The present study paves the way for establishing CST design guidelines, and we aim to extend our study by considering the discussed considerations for our future work.
Acknowledgment

This study was funded by the Federal Aviation Administration (FAA) Center of Excellence (COE) for Commercial Space Transportation (CST) via FAA Cooperative Agreement 15-C-CST-FIT-016. The authors would like to thank the FAA COE CST for funding.

References

