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ABSTRACT
Advancements in robotics, artificial intelligence, and other automa-
tion have highlighted the need for humans to work together with
machines in a more flexible and collaborative fashion than previ-
ously possible. To formulate effective human-robot teams, it is crit-
ical to understand which factors play important roles in enhancing
human-robot teamwork. To gain preliminary insights into key fac-
tors of effective human-robot teams, we carried out an experiment
using an enhanced version of the “Lunar Lander” game, where the
goal is to safely land a spacecraft on the moon’s surface in con-
cert with an AI teammate. We specifically attempted to observe
some patterns of communication across high-performing teams in
the experiment. Due to the limited number of experimental par-
ticipants, the results of the experiment did not definitively identify
the factors that account for effective teams. Instead, the experi-
ment indicated potential avenues to further investigate, including
intent-oriented communication and trust in teams with human and
non-human entities. This paper presents findings from the experi-
ment and discusses future work to extend the scope of the study to
include teleoperation of unmanned vehicles with communication
delay.
Keywords: Human-Automation Teamwork, Trust in Automation.

1. Introduction
In 1951, Paul Fitts proposed a list comparing what people are better
at and what machines are better at, also known as MABA-MABA
[1]. Since the introduction of Fitts’ list, machine capabilities have
advanced and are now more capable of handling a wide spectrum
of tasks at the same level as humans or even better [2, 3]. Techno-
logical advancement in the form of AI, robots, and other types of
automated agents highlight the need for humans to work together
with machines in a more flexible and collaborative fashion than
previously possible.

The tasks mentioned in Fitts’ list have been considered to be al-
located either to human or machine, with few or no substitutions of
performers expected during the course of an interaction. However,
some human-automation teams can now tailor their collaboration
by substituting task performers based on the performers’ capabili-
ties, environmental conditions, etc [4, 5, 6]. In such a flexible col-
laborative relationship, it is imperative for the human-agent team
to effectively assign each performer’s function in a timely manner
during the course of a task to maximize overall team performance.

Communication is a key factor in teams, including human-human
teams as well as teams with human and non-human entities. In the
case of a human-human team, team members communicate with
each other via verbal, facial, and/or other communication meth-
ods. Researchers have studied the traits of an effective team (e.g.,

[7, 8, 9]). Pentland [10] studied the significant factors in build-
ing a productive team by collecting data regarding team members’
communication behaviors from various types of teams. The data
showed consistent patterns of communication across the teams that
exhibited high productivity levels. Understanding trends of produc-
tive teams allows practitioners to develop strategies for enhancing
overall team performance.

Research in human automation teams have investigated whether
the patterns of communication of effective human teams could be
observed in teams with human and non-human entities (e.g., [11,
12, 13, 14, 15]. For example, Chiou et al. [13] adopted social
exchange theory in a human-agent cooperative scenario and inves-
tigated how two different social exchange structures (i.e., negoti-
ated and reciprocal exchange) could affect joint performance of the
human-agent team.

In this paper, we present our preliminary investigation aiming
at gaining insights into patterns of communication for designing
human-AI interaction systems that maximize team performance.
We believe that an effective human-AI team should exhibit certain
consistent patterns of communication during task interactions. To
test this, we carried out a study using the “Lunar Lander” video
game which asked participants to safely land a spacecraft on the
moon’s surface while working in concert with AI agents executing
different collaboration strategies. The second section of this paper
describes related work. The third section addresses our hypotheses
and experimental design of the study. Then, we present results from
the study and discuss implications of patterns of communication
between the humans and AI agents. The final section concludes
with limitations of the study and suggests potential directions for
future work.

2. Related Work
2.1 Levels of Automation and Dynamic Func-

tion Allocation
Fitts [1] and others [16, 17, 18] have proposed taxonomies or scales
that describe the levels of automation (LOA) of a human-automation
team. These teams can adapt to one of the automation levels during
a cooperative task, and it is critical to switch each entity’s func-
tion in a timely and appropriate fashion for enhancing overall team
performance. This requires a sound understanding of the effects of
each LOA on human-automation interaction and how to facilitate
dynamic function allocation for maximizing overall performance.
Several strategies for adjusting the LOA have been investigated:
(1) adaptive, (2) adaptable, and (3) hybrid functional allocation
schemes (e.g., [19, 20, 21, 22, 4, 5]). One of the contributions to
control systems and interface design for human-automation inter-
action is the Horse-Mode (H-Mode) interaction strategy [6]. In this
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work, a human operator communicates with an automated agent via
a haptic device (e.g., a force-feedback joystick), allowing the op-
erator to convey their intention to the agent and detect the agent’s
intention. The interaction strategy was either a “tight rein” mode or
a “loose rein” mode. With the tight rein mode, the operator had a
more dominant control authority whereas the loose rein mode pro-
vided the automated agent with a higher degree of control authority.
Results of empirical studies indicated the usefulness of the H-Mode
for keeping a human in the automation loop [23, 24].

2.2 Team Communication
Communication is a key factor in teams, including teams with hu-
mans and non-human entities as well as human teams, and it is
promising to dissect process measures regarding communication
in order to assess how effectively teams work together [8]. In
the case of human teams, team members communicate with each
other via verbal, facial, and/or other communication modalities, re-
sulting in resilient, robust, and efficient communication [25]. In
contrast, although both verbal and non-verbal communication ap-
proaches are available [26, 25], human-robot/AI teams are required
to exchange information with less flexible communication meth-
ods, highlighting the importance of understanding how teams can
effectively communicate within their members. To better under-
stand communication of human-robot/AI teams, researchers have
been attempting to apply knowledge of human teams, including
social exchange theory, to the context of teams with human and
non-human entities [25].

One of the patterns of communication in effective human teams
is that they tend to “push” information rather than “pull” informa-
tion, and research work has been done to investigate whether such a
trend could be observed in human-robot teams [15, 14] and human-
autonomy teams [11, 27]. Other precedents examined the effects of
information types [28] and explicit and/or implicit communication
on human-agent teamwork [29, 30]. These precedents provided
fruitful insights into the applicability of findings from effective hu-
man teams to human-robot/AI teamwork and suggested considera-
tions for further investigation.

2.3 Trust in Automation
Lee and See defined trust as “the attitude that an agent will help
achieve an individual’s goals in a situation characterized by un-
certainty and vulnerability” (p.51) [31] and argued that good cal-
ibration, high resolution, and high specificity are key enablers for
achieving appropriate trust. In order for humans to achieve high
specificity, they must possess a solid understanding of specific ca-
pabilities of automation systems that may fluctuate over time dur-
ing the interaction, which could prevent humans from misuse and/or
disuse of their automated teammates. Research work has been
done to identify factors influencing trust in automation [31, 32, 33,
34], and researchers have investigated how such influencing factors
could affect human trust in automation by employing different as-
sessment methods of trust, including subjective and objective mea-
sures of trust. Reviews [35, 33, 36, 37] revealed a tendency to use
subjective measures of trust.

3. Methodology
Our study is based on contributions made by Tan et al. [38] and
uses a customized lunar lander game to investigate how human op-
erators interact with agents of differing capabilities to achieve high
performance in different collaboration conditions. The goal of the
human-agent team is to safely land a spacecraft within a designated

landing zone on the moon surface (Figure 1). The following sub-
sections address the experiment design, including development of
the custom lunar lander game environment and experiment proce-
dures.

Figure 1. (A) a successful landing case, (B) a partially successful
landing case, where the lander’s left side leg is outside the landing
zone, (C) one of failure modes, where the lander’s base makes con-
tact with the moon surface, and (D) a trial where a participant is
playing the game with one of the two agents. Below the trial number
and current score, the thinking head icon appears and flashes when
the agent is providing inputs.

3.1 Independent Variables
Table 1 lists independent variables in the lunar lander game.

Table 1. Independent Variables in the Lunar Lander Game

Factor Levels
Agent Capability 1. More Capable

2. Less Capable
Task Difficulty 1. Easy

2. Medium
3. Hard

Control Scheme 1. Compositional
2. Non-Compositional

Control Input Ratio* 1. Human: 75 % / Agent: 25 %
2. Human: 50 % / Agent: 50 %
3. Human: 25 % / Agent: 75 %

*Control Input Ratio is only for the compositional case

3.1.1 Control Scheme

There are two control schemes: (1) compositional and (2) non-
compositional. In the compositional control case, the human and
the agent both have control inputs to the main engine and side en-
gines of the lander. Each entity’s input is consolidated based on
the control input ratio conditions (see 3.1.2). In contrast, in the
non-compositional case, the human has only the control input to
the side engines while the agent handles only the main engine.

3.1.2 Control Input Ratio

The control input ratio independent variable is a measure of con-
trol authority. It is used in the compositional control scheme trials
and determines how to consolidate the inputs from the operator and
agent. The 75% Human and 25% Agent condition is considered the
Tight Rein mode, where human has more dominant control than
the agent. The flipped ratio condition (i.e., 25% Human and 75%
Agent) is the Loose Rein mode, where the agent has more dominant
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control. The middle-ground condition splits the total control input
into 50% Human and 50% Agent.

3.1.3 Task Difficulty

The goal of the lunar lander game is to safely land the spacecraft on
the moon surface. The scoring policy modifies the original OpenAI
Gym lunar lander game by adding additional points if the lander
lands anywhere in the designated landing zone between the two
yellow flags. Whereas the original lunar lander game modulates
difficulty by presenting different terrain profiles and initial space-
craft conditions (i.e., position and velocity) in a random manner,
this study employs the notion of Index of Difficulty (ID), which
is derived from the Fitts’ law paradigm [39]. Fitts’ law states that
the time it takes to move a cursor to an area and select it is a func-
tion of the distance to the target and the size of the target, and the
movement time (MT ) is calculated as follows:

MT = a+b∗ log2(1+D/W ) (1)

where a and b are constants that are dependent on the input de-
vice, D is the distance to move, and W is the width of the tar-
get; the Index of Difficulty ID is defined by the logarithm term
log2(1+D/W ). In this study, D and W correspond to the shortest
distance to the designated landing zone and landing pad size, re-
spectively. Figure 2 shows the three levels of task difficulty. The
lunar lander consistently starts from the left side, and difficulty is
modulated by changing the distance to, and width of, the landing
zone.

Figure 2. The three task difficulty levels used were: (A) easy case;
the lander is set at the center with a wide landing zone, (B) medium
case; the lander is set at the left side with a wide landing zone, and
(C) hard case; the lander is set at the same position as the medium
case, but the landing zone is narrow.

3.1.4 Agent Capability

The human participants interacted with two types of agents: (1)
the more capable agent and (2) the less capable agent. The two
agents were trained by employing methods developed by Tan et
al [38]. The more capable agent was designed to consistently ex-
hibit almost optimal performance levels whereas the less capable
agent had a larger variance in capabilities, resulting in lower perfor-
mance. Figure 3 presents each agent’s performance level in a fully
automated case (i.e., Human 0% and Agent 100%). This shows
consistently higher performance in terms of game score and lower
task completion times for the more capable agent than for the less
capable agent.

Figure 3. Comparison of agents’ performance levels; each agent
performs 100 trials across the three task difficulty levels (i.e., 300
trials in total). The left box plot also shows the number of successful
landings across the three difficulty levels.

3.2 Dependent Variables
Table 2 lists dependent variables in the lunar lander game.

Table 2. Dependent Variables in the Lunar Lander Game

Category Measures
Outcome 1. Game Score [-]

2. Time to Complete [ms]
Process 1. Number of Human Inputs [-]

2. Number of Disagreements [-]

3.2.1 Game Score

The team gains 100 points if the team safely lands the spacecraft
on the moon surface; otherwise, the team receives -100 points (i.e.,
failure). The team gets an additional 100 points if the lander lands
in the designated zone between the two yellow flags (see Figure
1). Whereas the original lunar lander game penalizes the horizon-
tal distance from the center of the landing zone to the center of the
lander, the custom environment eliminates that penalty by recog-
nizing an equivalence in landing anywhere between the two flags.
If the lander goes outside the game screen, the team receives -200
points. Also, a 50-second time limit was set for each trial, and if the
team exceeds the time limit, the team receives -300 points. There
were no fuel constraints applied during the trials. Except for these
modifications, the custom environment employs the same scoring
policy (i.e., each control input to the main engine and side engines
results in -0.3 points and -0.03 points respectively). Typically, a
successful landing in a landing zone results in 300 to 350 points.

3.2.2 Time to Complete

Time to complete is measured from the beginning of the trial until
there is a successful landing or failure. The time to complete is
used for normalizing the number of human inputs.

3.2.3 Number of Human Inputs

During a trial, the number of keystrokes that the participant makes
is recorded and normalized for each trial using time to complete.
The game continuously records participants’ keystrokes if they hold
down key(s) during a trial. The three arrow keys are used for the
lander control: the up-arrow key is for activating the main engine
(i.e., moving upward), the left-arrow key is for activating the right
side engine (i.e., moving left and rotate in a counterclockwise di-
rection), and vice versa for the right-arrow key. A combined input
is recorded in a case where the participant simultaneously presses,
for example, the up-arrow key and left- or right-arrow key.
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3.2.4 Number of Disagreements

This metric counts the number of situations where a disagreement
occurs between the human operator and the agent on the direction
of lateral movement during a trial. For instance, if the human pro-
vides a right side engine input whereas the agent provides a left side
engine input, the consolidated input is counted as a disagreement.
This metric is also normalized for each trial using time to complete.

3.3 Experimental Procedures
The experiment consists of briefing, a familiarization session, com-
positional and non-compositional sessions, and debriefing, which
takes approximately 1.5 hours in total. A total of nine volunteers
from our internal research group participated in the study. The
briefing included a short presentation to provide the study objec-
tive, experimental flow, and explain the lunar lander game envi-
ronment. To mitigate the confounding factor of agent prejudice,
the two agents were introduced without any explicit descriptions
regarding their capabilities. The participant was asked to evaluate
two agents’ capabilities by playing the lunar lander game.

On completion of the briefing, the participant is asked to play 10
trials of the lunar lander game without any agent assistance. (i.e.,
manual case). This allows the participant to better understand the
nature of the lunar lander game. Then, the participant observes
the two agents’ performance when each of the two agents plays 10
trials in a fully automated manner. After the demonstrations of the
two agents, the participant has a chance to manually play another
10 trials. In the familiarization session, ten trials consist of four
easy cases, three medium cases, and three hard cases, and they are
presented in the order from easy to hard.

After the familiarization session, the participant plays the lunar
lander game in the compositional control condition. The composi-
tional case session consists of six experimental blocks based on the
combinations of the two agent types and three control input ratios.
The control input ratios are randomized within each agent type.
Each difficulty level has 10 trials (i.e., 30 trials per block), and the
three task difficulty levels are randomly presented. Following this,
the non-compositional case session consists of two trials where the
participant plays the lunar lander game with each agent type while
only having the control of the side engines. Each experimental
block contains 30 trials, and the difficulty levels are randomly pre-
sented in the same fashion as the compositional case session.

In debriefing, the participant is asked to verbally provide sub-
jective feedback on the two agents’ capabilities, the two control
schemes, and the control input ratios for the compositional case.

4. Data Analysis
For data analysis, R (version 4.0.1) is used [40]. We ran a statis-
tical analysis for each of the two control schemes (i.e., composi-
tional and non-compositional cases) respectively. We performed a
MANOVA test with the three factors (i.e., the agent capability, con-
trol input ratios, and task difficulty levels) for the compositional
case and another MANOVA test for the non-compositional case
with the two factors (i.e., the agent capability and task difficulty
level). Furthermore, we utilized the participants’ subjective feed-
back on their experience with the two agents for gaining additional
insights. The following presents our hypotheses in this study:

• Score: As the agent’s control input ratio increases, the team
will exhibit higher game scores. Also, the team will exhibit
better overall performance in the easy level condition when
compared to the difficult level condition. These trends will
be more pronounced in the more capable agent condition.

• Human Inputs: As the agent’s control input ratio increases,
the number of human inputs will decrease. Also, as the task
difficulty level increases, the number of human inputs will
increase. These trends will be more pronounced in the more
capable agent condition.

• Conflicted Inputs: There will be fewer number of dis-
agreements when human collaborates with the more capable
agent.

• Score and Human Inputs: More variance will be observed
in the number of human inputs vs. score scatter plot in the
less capable agent case, and less variance along with more
consistent and predictable patterns will be observed in the
case of the more capable agent.

5. Results
To confirm the normality of the collected data, a Shapiro–Wilk
test was performed, and QQ-plots and histograms were generated,
suggesting the violation of the normality assumption. Therefore,
a MANOVA test was carried out by adopting a method proposed
by Friedrich et al. [41, 42], relaxing the normality requirement.
The MANOVA test indicated that there was a significant main ef-
fect of the agent type for the compositional case (p < 0.05), and
no significant effects were found for the non-compositional case.
Although post-hoc pairwise comparisons were carried out for the
compositional case, there were no significant differences. Figure
4 shows box plots of scores, completion time per trial, normalized
number of human inputs, and normalized conflicted lateral inputs
across the conditions. Figure 5 shows: (A) the normalized number
of keystrokes that Participant ID 1 provided during the study and
(B) the scatter plots regarding the normalized number of keystrokes
and corresponding scores. Additionally, Figure 6 depicts a history
of keystrokes of one trial provided by Participant ID 8 who worked
on the hard difficulty level with the more capable agent in the loose
rein mode.

6. Discussion

6.1 Implications
In this study, we attempted to gain preliminary insights into pat-
terns of communication in the human-agent teams for achieving
better team performance using the lunar lander game. Even though
the post-hoc pairwise comparisons did not yield significant differ-
ences between the conditions, the MANOVA test indicated a signif-
icant difference between the two agents. This can be supported by
subjective feedback collected during the debriefing; all participants
preferred the more capable agent. Yet, the effects of the control in-
put ratios as well as the task difficulty levels are not clear, making
it difficult to confirm our hypotheses. Although the more capable
agent did not exhibit consistent patterns of keystrokes as shown in
Figure 4, Figure 5 implies the expected trend in the keystrokes and
scores. In the lower right scatter plot in Figure 5, the upper left
area could be a “sweet spot” for achieving successful landing and
higher scores whereas plots were more distributed in case of the
less capable agent. Participant ID 1 provided subjective feedback
on the more capable agent; he let the agent do the landing task in
the 75% of agent control input ratio condition, indicating trust and
reliance on the agent.

Another participant also shared her strategy during the debrief-
ing. She trusted in the more capable agent once the floating lander
entered the landing zone; otherwise, she was trying to navigate the
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Figure 4. Comparisons of scores, completion time, and normalized number of human inputs across the conditions and control disagreements
of lateral inputs. The top box plots also show the number of successful cases out of 90 trials (i.e., 10 trials x 9 participants).
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Figure 5. (A) Tracking of the number of keystrokes (normalized) that Participant ID 1 provided in the course of the study (i.e., Trial 1 to 240),
and (B) scatter plots show the relationship between keystrokes provided by ID 1 and scores in the compositional case across the three control
input ratios.
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lander by herself. This highlights the contextual nature of trust. As
seen in Figure 6, it seems she attempted to provide more inputs in
the first half of the trial whereas a trend of the absence of inputs
is observed in the second half of the trial. We believe that such a
profile of the keystrokes could help to further investigate whether
human possesses appropriate trust in an automated agent for a spe-
cific scenario and timing.

As the number of successful landing trials of the non-
compositional case indicates (Figure 4), the participants mentioned
that the non-compositional case was more challenging. One par-
ticipant suggested providing another 10 trials in the familiarization
session so that participants could feel more comfortable with the
non-compositional control scheme. It was observed that partici-
pants who played well in the familiarization session felt more com-
fortable with the non-compositional case.

Figure 6. One of the successful hard trials performed by Participant
ID 8 with the more capable agent in the loose rein mode (i.e., the
agent had 75% of control); the assigned numbers, 0, 2, and 11, mean
no inputs, move up, and move up and right, respectively.

6.2 Limitations and Future Work
The number of keystrokes provided by the participants were col-
lected in order to gain insights into patterns of communication to
achieve better team performance in the human-agent team. How-
ever, with the current game setting, the human-agent team members
do not essentially “communicate” with each other. Rather, each en-
tity reacts to the teammate’s input through the observation of the
resulting lander behavior. They then provide their own inputs in
response. In future studies using the same game environment, we
could prompt team communication by introducing multiple landing
zones with different widths and rewards. In this scenario, the team
is required to reach an agreement on their targeted landing zone.
For example, the team had two options: descending vertically (easy
/ low reward) and moving to the farthest landing zone (hard / high
reward). If the human aimed at the vertical landing (i.e., the easy
case), they would provide no lateral inputs. Based on the absence
of human’s lateral inputs, the agent would understand the human’s
intention and then move towards the “designated” landing zone. In
such a scenario, the agent’s intention must also be transparent and
easy-to-comprehend so that the human operator can recognize the
agent’s intention [43]. This type of communication is similar to the
communication performed in H-Mode collaboration schemes [6]
and is one of the potential exploration directions for future work.

We acknowledge other limitations, including the sample selec-
tion and size, and the game environment. Another avenue to ex-
plore is to increase the task complexity by introducing a fuel usage
constraint, which would require the human-agent team to negoti-
ate and reach an agreement on landing zones and control strategies.
One participant suggested alternately presenting the two agents with
the same control input ratio so that participants could more easily

compare the two agents. Another participant suggested providing
participants with time to write down their experience after each
block so that they could revisit their notes during the debriefing.
By considering these suggestions, we could administer a question-
naire for investigating participants’ trust, reliance, and workload in
the next iteration.

We could also extend the scope of the study to include teleoper-
ation of unmanned vehicles. One of the approaches for expanding
the preliminary study in the human-robot teleoperation setting is to
employ the steering law [44] and/or the cornering law [45], which
serves as an analog to the Fitts’ law [39]. The human-robot team
would be asked to conduct a scout mission in a maze and maxi-
mize total game scores. Figure 7 illustrates one of the examples,
and the team needs to negotiate whether to negotiate one of the
corners or go straight. Each pathway has different reward points
depending on the task difficulty levels. This remote working en-
vironment may require the team to communicate well with each
other to achieve a better level of situational awareness and exhibit
better game scores. With this teleoperation human-robot teaming
setting, we could present different collaboration configurations by
introducing, for instance, communication delay, a secondary task
for the human operator, and/or multiple robots.

Figure 7. An example intersection presents three potential path-
ways with different task difficulty levels. The human-robot team is
asked to communicate with each other to achieve a better level of
situational awareness and exhibit better game scores. The human
operator does not have access to this type of third-person view dur-
ing the trials.

7. Conclusions
We conducted an experiment to gain preliminary insights into
human-agent teamwork with a focus on patterns of communica-
tion. In the study presented here, the participants jointly played
the lunar lander game with the two agents that were configured
with different collaboration strategies. We expected that the partic-
ipants would exhibit a more consistent pattern of inputs when col-
laborating with the more capable agent. Although the results indi-
cated that the agent’s capability could impact the human-agent team
performance, our questions regarding the human-agent teamwork,
patterns of communication, and associated influencing factors still
remain. One of the critical considerations for the next iteration
of experimentation includes implementing a situation where the
human-agent team is required to “communicate” with each other
for achieving a shared goal, and we could employ the H-Mode-
style (intention-based) communication. The subjective feedback
from participants implied the notion of appropriate trust and dis-
trust; their trust in the agent seemed to depend on situations, in-
cluding the task difficulty, lander position, etc. The study presented
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here serves as a steppingstone to the next round of experimenta-
tion, including human-robot teamwork setting (e.g., teleoperation
of unmanned vehicles). Future work should address the human-
robot/agent communication and teamwork in a more comprehen-
sive fashion by incorporating the insights from this study.
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