
VINE: A Cyber Emulation Environment for MTD

Experimentation

Thomas C. Eskridge, Marco Carvalho, Evan Stoner,
Troy Toggweiler, and Adrian Granados

Harris Institute for Assured Information
Florida Institute of Technology

Melbourne, FL
teskridge,mcarvalho@fit.edu

ABSTRACT
Dynamic and moving target defenses are generally charac-
terized by their ability to modify their own state, or the state
of the protected target. As such, the evolution of these kinds
of defenses require specialized experiments that can capture
their behavior and e↵ectiveness through time, as well as
their broader impacts in the network. While specialized ex-
periments can be constructed to evaluate specific defenses,
there is a need for a general approach that will facilitate
such tasks. In this work we introduce VINE, a high-fidelity
cyber experimentation environment designed for the study
and evaluation of dynamic and moving target defenses.

VINE provides a common infrastructure supporting the
construction, deployment, execution, and monitoring of com-
plex mission-driven network scenarios that are fully instru-
mented. The tool was designed to be scalable, extensible,
and highly configurable to enable the study of cyber defense
strategies under dynamic background tra�c and attack con-
ditions, making VINE well-suited for the study of adaptive
and moving target defenses. In this paper we introduce the
VINE approach, the VINE architecture for MTD experimen-
tation, and provide an illustrative example of the framework
in action.

Categories and Subject Descriptors
C.2 [COMPUTER-COMMUNICATION NETWORKS]:
Network Operations—Network monitoring; Network man-

agement

General Terms
Experimentation

Keywords
Moving Target Defense Experimentation; Network Emula-
tion; Network Creation; Network Monitoring

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
MTD’15, October 12, 2015, Denver, Colorado, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3823-3/15/10 ...$15.00.
DOI: http://dx.doi.org/10.1145/2808475.2808486.

1. INTRODUCTION
Virtual Infrastructure for Network Emulation (VINE) pro-

vides a common infrastructure for the construction, deploy-
ment, execution, and monitoring of complex mission-driven
network scenarios. The tool was designed to provide a high-
fidelity and highly configurable environment for the study
of cyber defense strategies, tools, and techniques. As such,
VINE is largely designed as an experimentation platform,
with support for automatic scenario generation, deep instru-
mentation, and hypothesis testing through semi-automated
analysis of experimental results.

VINE was originally developed for the high-fidelity emu-
lation of tactical communication systems. The later gener-
ations of VINE have extended the original emulators to in-
clude broader aspects of the system infrastructure, applica-
tion support, user models, and mission descriptions. These
capabilities were built on top of the emulation infrastruc-
ture, which enables VINE to support a wide range of em-
ulation capabilities ranging from user models, down to the
individual layers of the communications stack of individual
nodes.

VINE relies on both host and network virtualization for
the experimentation environment. The framework also sup-
ports the integration of physical systems and specialized
hardware in the loop. The framework provides the bridge
across the virtualized and the physical components and,
within the constraints of the integrated devices, provides a
unified view of the experimentation environment, including
both virtualized and physical nodes.

VINE is actually a collection of tools. As illustrated in
Figure 1, there are a number of components that compose
the VINE experimentation environment. The numbers to
the upper left of each component in the figure indicate in
which section or sections of this paper that component is dis-
cussed. VINE is an active research project within the Harris
Institute for Assured Information. It is used as a testing en-
vironment for other cybersecurity projects [1, 3] as well as
for a safe space to undertake cyber attacks and defenses for
classroom assignments. We are also continually extending
VINE to assist and automate more of the experimentation
process. As detailed in [8], VINE provides a framework on
which a general theory of automated experimentation can
be implemented.

2. EXPERIMENTATION PROCESS
Cyber experimentation involves a cyclic process (shown

in Figure 2) that includes environment construction; exper-

Figure 1: VINE experimentation environment.

iment design, creation, execution, and control; monitoring
and data gathering; and data analysis. Here, we will briefly
identify the steps involved in cyber experimentation. Fur-
ther details of the general methodology and process can be
found in [8].

Experiment Design The design of the experiment involves
creating hosts and assigning their roles, including operating
system and installed software, benign and malicious traf-
fic generation, and network and moving target defenses. It
also includes the identification of indicators of experiment
performance, as well as the selection and assignment of ex-
periment variables to be used over several iterations of the
experiment. These variables can represent attack rates, de-
fense movements, background tra�c levels, or mission re-
quirements.

Experiment Creation. Once the design is complete, the
experiment can be instantiated with a variety of parameters
for defenses and attacks. For any experiment, the creation
through analysis phases are likely to be run numerous times
to collect average-case behavior, rather than one-o↵ behav-
iors.

Experiment Execution and Control. VINE provides the
necessary functionality to run the experiment, modify testbed
components when necessary, and ensure proper handling of
experimental data that can be analyzed at the end of the ex-
periment. Depending on the experimental design, new pro-
cesses and network components can be set up to initialize
and join the network at particular times during the course
of the experiment.

Experiment Monitoring. VINE wraps functionality that
enables users to monitor the performance of the machines
emulated in the testbed, as well as the hardware the testbed
is running on. This can help to identify significant events
within the experiment itself, as well as events from the vir-
tualization platform used to run the testbed.

Experiment Analysis. The data collected along the ex-
periment backplane connecting all testbed virtual machines
is made available for both automated and manual analysis.
Depending on the experiment, the logs can be programmat-
ically evaluated, and changes to the network, services, or

Figure 2: VINE experimentation process.

experiment parameters can be made based on the evalua-
tion results.

3. FUNCTIONALITY
A number of features in VINE provide the functionality

to enable cyber experimentation. While VINE at its core
provides the means to emulate network topologies with a
high level of fidelity, additional tools provide the means for
connecting physical systems to emulated ones, generating
realistic background and attack tra�c, instrumenting exper-
iments, and duplicating topologies across installations and
platforms.

3.1 Building Network Topologies
VINE abstracts underlying virtualization providers to re-

alize complex network topologies. Through a variety of in-
terfaces, users can build emulated networks whose hosts are
heterogeneous in terms of (virtualized) hardware and oper-
ating systems. Thus, surrogate environments can be built in
VINE that mirror a physical counterpart in size, layout, and
configuration. In addition, wireless network emulators such
as EMANE [5] can be installed on virtual hosts to create
scenarios consisting of both wireless and wired connections.

Because VINE scenarios are powered by cloud computing
platforms such as OpenStack [9], their scale is only limited
by the compute resources available in the targeted cloud.
The overcommitting of physical compute resources by those
cloud providers can turn commodity hardware into a back-
end for medium-to-large-scale network experiments in VINE.

3.2 Hardware in the Loop
Physical devices can be plugged into VINE scenarios us-

ing normal networking operations. Each isolated testbed in
VINE exposes a routable entry point through which exter-
nal physical subnets can connect, just as one would connect

Figure 3: Integrating external hardware into an em-
ulated testbed.

to a physical subnet (see Figure 3). This feature enables
users who have existing labs or specialized hardware such as
IP hopping appliances to scale their experiments using vir-
tualized hosts. Similarly, the entry point can also serve as
a gateway for the virtualized hosts so that they can “reach
out” and interact with the existing physical devices.

3.3 Background and Attack Traffic Behavior
Generation

Additional tools (see Section 4.2) enable the user to de-
sign both benign and malicious tra�c generation models.
The agents that execute these models understand mission
goals and as such are capable of adapting when failure is
encountered, just as a human would. By chaining many
of these behaviors together, a complex and dynamic narra-
tive can be built which closely reflects the operations of a
real-world organization. This includes attackers who possess
extensive and advanced toolchains of exploits, and operators
who deploy and manage moving target techniques.

The behavior generation functionality is deployed on VINE
testbeds by associating a behavior with a testbed virtual ma-
chine as a role. On VM startup, the roles are executed and
the virtual machine takes on the persona of the behaviors
running on it.

3.4 Instrumentation and Monitoring
VINE can instrument experiments in two places: The first

is at the host, where traditional packet capture can be per-
formed. Packet capture enables a low-level analysis of the
state of a host in an experiment and can reveal intricacies
of the executions of both attacks and defenses. In addition,
monitoring agents installed on the hosts can collect and re-
port information about the host such as CPU and memory
consumption and a list of open files.

The second instrumentation location is at the tra�c gen-
eration agents, which log information about successes and
failures of their communication behaviors in order to pro-
vide the ground truth of the experiment. Compared to host
monitoring data, this information conveys a higher level of
information to the user that speaks to mission goals and

computing tasks rather than protocols and payloads. Dash-
boards and other visualizations are used to display behavior
data, such as number of successes or failures versus time (see
Section 5 for an example of these dashboards). These visu-
alizations support drilling down into the data, for example
to show the number of communication failures generated by
an FTP activity.

The multiple resolutions of instrumentation that VINE
supports enable the user to verify the consistency of multi-
ple executions of the same trial, and produce quantitative
results on the e↵ects of a defense across varying trials.

3.5 Portability
Reproducibility is an important component of any sci-

entific endeavor. VINE supports exporting and importing
testbed specifications to enable external entities to reinstan-
tiate network topology and configurations and rerun exper-
iments to confirm experimental results. This functionality
also allows two organizations to build identical topologies
for parallel experimentation. Through the use of IT au-
tomation tools, these environments can also be configured
identically from a software perspective, including enterprise
services like email and FTP servers and experiment tools
like wireless emulators and network defenses.

In addition, VINE can export testbed topologies to a for-
mat that Emulab-based testbeds such as DeterLab [4] can
understand. The ability to instantiate scenarios on multiple
providers is a crucial part of experimentation as it ensures
the validity of an experiment isn’t tied to a specific environ-
ment.

4. DESIGN
VINE is implemented as a collection of separate, indepen-

dent components that include: topology generation, tra�c
behavior generation, operator interface, and underlying in-
frastructure. Each of these components can be used inde-
pendently of the others and, thus, can be altered or replaced
by other functionally equivalent implementations to perform
the experimental task.

4.1 Topology Generation
VINE currently supports three methods for topology con-

struction:
Manual, where the user interacts with VINE’s web-based

UI to modify hosts and their attributes one-by-one.
Programmatic, where external tools interact with VINE’s

HTTP API to build testbeds. The HTTP API also supports
the all-at-once instantiation of entire testbeds by importing
a JSON description of the testbed.

Tool-based, where the user interacts with a tool called
Genesis [2] which is capable of generating topologies that
mirror those of actual geographical regions based on popu-
lation density and distribution of services (banks, hospitals,
schools, etc.). By selecting the region and service types,
Genesis explores public sources to determine a probably
topology.

4.2 Traffic Behavior Generation
VINE uses software agents to provide its background traf-

fic and attack generation capabilities. The modularization of
tra�c generation with agents allows the background model
to be changed. For example, VINE currently supports both
service distribution profiles (such as those generated by Gen-

esis) and behavior tree–based behaviors [6]. These mod-
els provide suitable emulation of both benign and malicious
users, who use real virtualized services (e.g. HTTP, FTP,
and email) and real attack libraries (e.g. Metasploit [7]).

Behavior tree–based models are especially relevant to MTD
experimentation, where the attacker must be capable of adapt-
ing to changes in the defender’s security posture. A benign
example of adaptation is shown in Figure 4, where a “Trans-
fer File” behavior can be accomplished in several di↵erent
ways. In the face of failure (e.g. FTP server is down), the
agent will adapt and try alternative methods (i.e. email-
ing). Likewise, an attacker may first attempt to exploit one
vulnerability, but in the case of failure, try another. The
interplay between these two enables measuring the mission
impact of an attack. If the mission requires the transfer
of a file and the attacker does not remove all three options
for accomplishing the transfer, then the mission will still
succeed, even though the attacker may have succeeded in
compromising one or more possible methods.

Figure 4: Hierarchical structure of behavior tree–
based tra�c generation agents.

4.3 Infrastructure
VINE is designed to facilitate cyber experimentation while

taking advantage of existing virtualization capabilities. VINE
has a clear separation between the abstract specification of
the set of tasks needed to define, construct, instantiate, con-
trol, and monitor experimental testbeds, and the underly-
ing implementation needed to realize those tasks. Defining
these tasks at an abstract level has allowed the development
of pluggable backends to interface with the desired or avail-
able virtualization software. Because of this, the virtualiza-
tion environment can be replaced to support experiments at
di↵erent scales and with di↵erent requirements. The actual
infrastructure used can be a single machine, a local collection
of hardware, or cloud-based installations using OpenStack.

4.4 Interface
VINE has two interfaces that are used to construct, exe-

cute, and manage cyber experiments. A web-based interface
allows operators to manually create, modify, and monitor
experiment testbeds, and to monitor the status of running
experiments. The web interface provides functionality for
lifecycle management of experiments as well, enabling cre-
ating, starting, stopping, and deleting experiment testbeds.

VINE also has a JSON-based HTTP interface that ex-
poses all of the VINE functionality to programmatic oper-
ation. This functionality has been particularly useful for
automated generation and control of experiments, where
the programmatic analysis of experimental results is used
to modify the parameters or initial conditions of the exper-
iment testbed, and a new experiment is run.

5. USE: A CASE STUDY
As an example of how VINE might be used in a realis-

tic MTD experiment, consider the construction of an analog
environment that mirrors a university research lab in order
to study the AppOSDiversity defense. The AppOSDiversity
defense periodically changes the application used to imple-
ment a service, preventing reliable fingerprinting of the ser-
vice by the attacker. The example environment consists of
four subnets—faculty, labs, servers, and external—with 20
hosts each.

5.1 Topology Construction
To build this topology, we first create a small slice of it

manually through the web interface, e.g. four subnets with
four hosts each. In addition to hardware and operating sys-
tems, the user can assign the proper roles and software con-
figurations to the hosts in this miniature network, including
benign and malicious tra�c generation and defenses. This
is a good time for the user to test and tweak configurations
because the systems can be studied without the complexity
introduced by scale.

This small topology can then be scaled up by duplicat-
ing the machine definitions and changing unique properties,
such as IP addresses. The scaling process can be carried out
manually (i.e. export the testbed to a text description then
copy and paste) or by a tool that can replicate elements of
the topology via the API.

5.2 Experiment Execution
The hosts in the testbed can be powered o↵ and on or

rolled back to a snapshot at any time, all together or individ-
ually. Benign and malicious tra�c generators and other ex-
periment software can be controlled likewise. Control is not
limited to on/o↵ switches—software agents that are a part of
the experiment can support live configuration changes, the
e↵ects of which can be observed immediately in dashboards
(see Section 5.3). In our moving target experiment, such
changes might include changing the dwell frequency, modi-
fying the attack being launched, or altering some attribute
of the benign tra�c. These tweaks can be performed by a
human or another agent, both of which are capable of acting
on feedback from the experiment to make their decision.

With appropriate virtualization resources, multiple ex-
periments can be run in parallel. VINE ensures isolation
between testbeds so that multiple instances of the same
scenario—either identical or slightly varied—can be run at
the same time without a↵ecting each other. By parallelizing
experimentation, the time from experiment design to results
is greatly reduced.

5.3 Data Collection
In an experiment that studies a moving target defense, a

variety of data is of interest to the user. Quality of service,
service availability, or mission success/failure are all of inter-
est. Figure 5 shows service availability for a user interacting
with an FTP server in a control trial where no defense is
in place and an attack is occurring at a regular interval. In
Figure 6, a moving target defense was added which improves
availability.

Figure 7 shows an experiment-specific dashboard which
graphs information about the multi-agent system generat-
ing background tra�c. Dashboards like this one are built
using a graphical editor that acts on log messages aggre-

Figure 5: Successful (green) and failed (red) FTP
connection attempts by a benign organizational user
without a defense in place. Failures correspond di-
rectly with the interval-based attack.

Figure 6: Successful (green) and failed (red) FTP
connection attempts by a benign organizational user
with a moving target defense in place. Although the
attack is being generated at the same interval as Fig-
ure 5, the defense clearly improves quality of service
by thwarting a portion of the attacks.

gated across the experiment. Both real-time and historical
views are supported.

6. CONCLUSION
Dynamic and moving target defenses are a promising ap-

proach to addressing the need for increased security on com-
puter networks. However, these defenses are significantly
di↵erent from static defenses and further experimentation
is necessary in order to determine their applicability and
e↵ectiveness.

VINE provides cybersecurity researchers with a set of
tools that accelerate the rate at which they can repeatedly
perform high-fidelity experiments at scale. Several interfaces
enable the construction of topologies in di↵erent ways, each
suiting a di↵erent type of experiment. Background tra�c
generators enable the rapid deployment of realistic network
conditions to the experiment, including both benign users
and attackers. The instrumentation available at several dif-
ferent layers provides researchers with a means to verify the
reproducibility of their experiment.

Figure 7: A dashboard depicting information about
experiment hosts and mission-specific metrics.

For moving target defenses to be proven useful, they must
be tested in a number of configurations, and in a number
of operational environments. Network emulation environ-
ments such as VINE give researchers a key tool in developing
the experimental results necessary to encourage and inform
adoption of moving target defenses.

7. REFERENCES
[1] M. Carvalho, T. C. Eskridge, L. Bunch, A. Dalton,

R. Ho↵man, J. M. Bradshaw, P. J. Feltovich,
D. Kidwell, and T. Shanklin. Mtc2: A command and
control framework for moving target defense and cyber
resilience. In Resilient Control Systems (ISRCS), 2013

6th International Symposium on, pages 175–180, 2013.
[2] M. Carvalho and M. Marcon. Genesis. Technical Report

HIAI-TR-15-3-1, Florida Institute of Technology, 2015.
[3] M. M. Carvalho, J. M. Bradshaw, L. Bunch, T. C.

Eskridge, P. J. Feltovich, R. R. Ho↵man, and
D. Kidwell. Command and control requirements for
moving-target defense. IEEE Intelligent Systems,
27(3):79–85, 2012.

[4] J. Mirkovic, T. V. Benzel, T. Faber, R. Braden, J. T.
Wroclawski, M. D. Rey, and S. Schwab. The DETER
Project: Advancing the science of cyber security
experimentation and test. pages 1–7, 2010.

[5] Naval Research Lab. Extendable mobile ad-hoc network
emulator (EMANE), 2015.

[6] P. Ogren. Increasing Modularity of UAV Control

Systems using Computer Game Behavior Trees.
American Institute of Aeronautics and Astronautics,
2015/06/15 2012.

[7] Rapid7. Penetration testing software | metasploit, 2015.
[8] E. L. Stoner. A foundation for cyber experimentation.

Master’s thesis, Computer Science, 2015.
[9] The OpenStack Foundation. OpenStack open source

cloud computing software, 2015.

