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Abstract—In this paper we introduce MIRA, an extensible and
modular infrastructure designed for the support of coordinated
cyber operations. MIRA was originally designed to provide the
infrastructure for a cyber-command and control framework
for cyber operations. MIRA provides a core set of services
that can be extended to allow for operations in specialized
or hybrid environments involving different service requirements
or operational constraints. The framework was designed to
support the specific needs required for command and control
of network sensors, defenses and actuators, and to support the
easy integration of third party network components, support
services, or communication protocols. After a brief motivation
about the needs and requirements for command and control
in cyber operations, we introduce and discuss the design and
implementation of the MIRA framework. The paper follows the
discussion with the description of a simple scenario used to
illustrate MIRA.

I. INTRODUCTION

The concept of command and control (C2) is generally as-
sociated with the exercise of authority, direction and coordina-
tion of assets and capabilities. The concept of C2 encompasses
important operational functions such as the establishment of
intent, allocation of roles and responsibilities, definition of
rules and constraints, and the monitoring and estimation of
system state, situation, and progress. More recently, the notion
of C2 has been extended beyond military applications to
include cyber operation environments and assets.

Unfortunately this evolution has enjoyed faster progress
and adoption on the offensive, rather than defensive side of cy-
ber operations. One example is the adoption of advanced peer-
to-peer C2 infrastructures for the control of malicious botnets
and coordinated attacks, which have successfully yielded very
effective and resilient control infrastructures in many instances.

Defensive C2 is normally associated with a system’s ability
to monitor, interpret, reason, and respond to cyber events,
often through advanced human-machine interfaces, or through
automated actions. Recent research activities in defensive C2
operations are now showing great potential to enable truly
resilient cyber defense infrastructures.

In this paper we introduce and describe an agent-based
framework called MIRA, designed to support resilient com-
mand and control infrastructures for cyber operations. Our
focus is on the coordination of dynamic and moving target
defenses, enabling C2 infrastructure that must be continually

changing and evolving to better respond to an environment, re-
quirements, and adversaries that are also continually changing
and evolving [5], [7].

II. REQUIREMENTS FOR CYBER C2

The goal of Cyber C2 is to increase the resilience of
the overall computer network. Resilience is found not in the
capabilities of individual defenses, but in the coordinated and
contextual use of multiple defenses [3], [8]. We have identified
several requirements necessary in order to create resilience in
Cyber C2 systems.

Support Infrastructure for Distributed Communication and
Computation A key requirement for Cyber C2 is a robust,
distributed support infrastructure that enables a separation
between the physical structure of resources on the network, and
the logical organization of the network and network resources
(see Figure 1.) This can be done in many ways, using custom
programming, using Service-Oriented Architectures (SOAs),
or as we have done, using distributed multi-agent systems [7].
This abstraction is necessary in order to identify the control
loops needed to coordinate multiple, dynamic defenses.

Semantic Reasoning Reasoning in abstract control loops
such as those shown in Figure 1, requires an abstract rep-
resentation of the network resources, sensors, actuators and
defenses, as well as attack vectors, and mission requirements.
In MIRA, we represent these resources as OWL concepts [13],
which enables abstract reasoning over network configurations,
and specification and enforcement of semantically-aware poli-
cies that guide the behavior of the C2 system. Both of these
capabilities are needed in order to reason about the effects of
adding or removing a defense (c.f. [2]) or selecting between
equally applicable defenses.

Fully automated control of highly complex systems tend
to be brittle against intelligent adversaries. A solution must
achieve the right balance between human and automated
control. In fact, the best approach is to combine the control
methods so that components of both human and automated
control systems are operating continually and simultaneously.
To achieve fast decision rates in critical areas, human input
into control decisions is often made using semantic policies.

Flexible Interface for the Integration of Third Party Sensors
and Defenses In order to support the requirements for abstract
representation and semantic reasoning, it is necessary for a



Fig. 1. Logical view of an agent-based command and control framework

Cyber C2 to be able to integrate new, third party sensors and
defenses into the C2 framework. This involves two aspects of
integration. First is the integration that allows the C2 system
to control the sensor or defense by executing control functions
or modifying the parameters of its operation. This requires
use of an API, socket, remote procedure call, or file-based
interactions. Second is the integration that enables the C2
system to determine when to deploy, enable, and/or modify the
operation of the sensor or defense. This involves representing
the resource requirements, controls, and parameter ranges and
settings for the new sensor or defense in a way that the
Cyber C2 can understand, manipulate, and control. In MIRA,
this is accomplished by automatically creating an ontological
representation when specifying the controls and their ranges.
Previous efforts have demonstrated that new sensors and
defenses can be integrated with an existing MIRA Cyber C2
system in very little time using this approach.

Distributed Learning and Coordination Support Resilience
as defined in [3] requires not only robustness to withstand
attacks, and the ability to recover back to a pre-attack level
of performance, but to reorganize so that the same or similar
attacks will not have the same effect on the network. This re-
quires learning and coordination support so that an appropriate
combination of defenses can be selected and parameterized to
ensure maximal performance. MIRA can make use of several
algorithms to enable this, including reinforcement learning [4],
bayesian model building [9], or hierarchical model building
[9].

Advanced Visualization and Human-Computer Interfaces
Computer network defense is a complicated domain, requir-
ing monitoring and understanding the relationships between
hundreds of variables coming from numerous sensors and
performance monitors placed throughout the network. It is
critical that this information is presented in a way that is
not only clear and understandable, but in a way that actu-
ally amplifies operator performance [11]. MIRA has several
interfaces that show the organization and operation of the
MIRA infrastructure [15] and of the traffic flowing through
that infrastructure [10].

Specialized Test and Experimentation Infrastructures It is
very difficult to experiment with Cyber C2 because of the
scale needed to construct realistic testbeds and the need to
isolate these testbeds in order to run malicious attacks. FIT
has developed an infrastructure for Cyber C2 experimentation
and testing called the Virtual Infrastructure for Network Em-
ulation (VINE) [17], [16]. VINE simplifies the construction
and management of large networks and isolates the networks
from others, while maintaining a control backplane for data
collection and experiment control.

III. THE MIRA AGENT SYSTEM

MIRA is a software agent toolkit and runtime system
for the development of distributed intelligent agent-based ap-
plications. From an architectural point of view, MIRA is a
lightweight framework containing interfaces to a number of
common services. Services are constructed to a well-defined



interface specification, and a default implementation, or service
provider, of each service provided with MIRA. Additional
services and service providers can be programmed and used in
addition to, or instead of, the default implementations so long
as they satisfy the interface specification.

A. Design Goals

There are a number of goals that MIRA agent system is
designed to achieve.

Agent System Service Modularity. The goal of agent
system service modularity is to insulate the agent execution
environment, called the MIRA Environment, and its services
from the agents. Agents are designed to interact with the
service interface rather than interacting directly with the im-
plementation of the service (see Figure 2.) The purpose of the
MIRA Environment is to provide agents with policy-regulated
access to key infrastructure services. By constraining the inter-
action to the service interface, the agents in the system remain
unaware of how that service is implemented and, therefore, can
make use of any service implementation that fulfills the service
interface. For example, the MIRA Environment has by default
two messaging service implementations, one UDP and the
other TCP. Agents sending messages in a MIRA environment
have no knowledge of which implementation is being used.

There are two benefits to this approach. First, there is a
software engineering benefit to developing service-provider
implementations to meet a prescribed service interface. This
simplifies implementations and ensures that service-provider
implementations that are specific to a particular network in-
stallation or that make use of specialized equipment will be
interchangable with standard implementations. Second, there
is a security benefit in not having all implementations for
services in a network being the same. The idea of increasing
the diversity of the network while maintaining functionality is
central to the concept of moving-target defenses [6].

Security limitations on agents. MIRA agents have limited
visibility into the lifecycle and service management function-
ality maintained by the MIRA Environment, so that agents
cannot intentionally or unintentionally access agent system
functionality that could be used to disrupt agent services. For
example, agents have access to the agent discovery and lookup
functionality of the Registration service, but they do not have
access to register and deregister either themselves or other
agents. By maintaining this separation between infrastructure
functions and agent functions, we reduce the likelihood of
deliberate or accidental errors caused by agents. Additional
security measures include class loading, encryption, authen-
tication, and code mobility. MIRA agents use a different
class loader from the MIRA Environment class loader, so
that malicious agents cannot load or access service classes by
reflection. All infrastructure communications are encrypted by
default, and PKI-based authentication is used to ensure that all
participants in communications can be identified. A decision
has been made to explicitly prevent agent code mobility, so
that all MIRA Environments must contain all of the agent code
necessary to run any agent that moves into the Environment.

Operating with Default Services. When a MIRA Environ-
ment starts up, it consults a local configuration to determine
which services and agents should be started immediately. If

Fig. 2. Agent communicate with the MIRA Environment to access Core
Services.

this configuration file does not specify a specific implementa-
tion for a service, a default service is used. The default service
generally has a minimal set of configuration dependencies, and
are typically entirely self-contained. As is the desired behavior
with all services, the default services either locate or create the
service at startup, and negotiate with other existing components
as necessary. Default services allow agent developers to focus
their development efforts on the agent itself, with very little
setup and configuration of the MIRA Environment required.

B. Core Services

The services that are currently specified for MIRA are
shown in Figure 2 and include:

Registration Service This service provides a naming and
location service for MIRA environments and agents in the
network. Environments and agents have their address and
particular properties registered with the registration service
when they start up, are modified, and when they terminate. The
registration service also provides methods for environments
and agents to lookup the location of other environments
and agents based on their registration properties. There are
currently three registration service implementations provided
with MIRA, two that require external servers, and one that is
self-contained.

Message Service The message service is used by MIRA
to send messages between agents and environments. Different
implementations of the message service typically instantiate
different transport mechanisms, such as the TCP- and UDP-
based implementations that are currently provided.

Message Encryption Service The message encryption
service provides the means for encrypting and decrypting data
and messages. By having the encryption service as a separate
service from the messaging service, any message encryption
can be applied to any message transport service transparently
to the user. There is one public-key encryption service provided
with MIRA.

Audit Service The auditing service captures and publishes
a timeline of all of the events issued by the MIRA infrastruc-
ture for use either internally for supervisory reasons or exter-
nally for debugging and visualization capabilities. There are
three auditing services provided with MIRA, two supporting
output of events to external databases, and one self-contained.



Logging Service The logging service is a utility service
for developers and operators that specifies naming and location
information for logs that may be generated on many different
network hosts. There is one logging service provided with
MIRA that enables configurable output of MIRA logs to the
console, disk, or syslog.

Publish and Subscribe Service The publish and subscribe
service provides the means for specifying the types of output
agents and environments create, and the types of input that they
need for processing. There is one simple peer-to-peer publish
and subscribe service provided with MIRA.

Policy Service The policy service provides the means
for controlling the operation of the MIRA services on an
interactive, detailed level. Policy control of the services ensures
that each action taken by the MIRA infrastructure can be
checked in the context of the current operating conditions, as
specified in a user-defined policy. There are two policy services
provided with MIRA, one semantic-based and the other based
on XACML [12].

Metrics The metric service provides the methods and func-
tions for monitoring and reporting performance and resource
usage measurements in the MIRA environment and for specific
agent actions.

IV. AN ILLUSTRATIVE SCENARIO

As an example of using MIRA for Cyber C2, we developed
a scenario involving an enterprise network containing sub-
networks for several different departments, including Human
Resources, IT Security, Research, etc (see Figure 3.) Each
of these subnetworks run a behavior system that emulates
the behavior of typical operators in each of the subnetworks
producing background traffic for the experiment [14]. An
attacker machine was created behind its own router on a
different network. The scenario runs under VINE in a private
OpenStack cloud environment.

The VINE experimentation controller was used to deploy
services, reset the scenario after each experiment, and to collect
data results. The experiments were started and stopped using
an Ansible [1] script on the experimentation controller. The
script started the FTP traffic generators on the client nodes
and the attacker scripts on the attacker node.

A C2Agent was responsible for sensing the state of the
FTP services and controlling the moving target defense. To
accomplish this, the enterprises used the MIRA agent system
as a control interface for all sensing, messaging and coordi-
nation between enterprises. Both moving target defense and
service sensing was started automatically by the MIRA system,
which was bootstrapped to the virtual machine. This allowed
the agent system to be started when the virtual machine
started, which in turn started the moving target defense as
well monitoring of the FTP service.

The attacker machine used a known vulnerability in one
FTP application (proFTP) to terminate the FTP process and
sleep for a predetermined time before performing the attack
again. This behavior is meant to simulate a persistent attack
from a malicious actor. The FTP servers in turn, had a
watchdog task running that would restart the service when it
was detected that the service was no longer running. The result

of this attack and response is an FTP server that is intermittent
and unreliable. The C2Agent will pick up on this diminishing
service and adjust the moving target defense configuration to
favor the non-vulnerable FTP server in an effort to mitigate
the persistent attack.

A. Agent Configuration

In the experiment, MIRA environments were running on
several computers in the IT Security department (middle left
of Figure 3.) The key agents were

• C2Agent. This agent coordinates and controls the
behavior of the defense-specific agents by tracking
overall system state and suggesting parameter and
configuration changes for defenses to agents that in-
terface to specific defenses. The C2Agent uses the
Publish-Subscribe core service to subscribe to updates
from application and defense monitoring and control
agents that indicate the performance and status of
the applications and defenses. It publishes control
messages to application and defense agents to reset
or modify the control parameters associated with the
defense or application.

• C2 Interface. This agent is a simple interface to the
agent system that allows user interaction with the C2
Agent and defense-specific agents. Users can issue
commands to the C2Agent or to the agents controlling
the defenses directly. This agent runs in the same
MIRA Environment as the C2Agent.

• AppOSDiversityC2Agent. This agent is the proxy to
the agent-based C2 system for the AppOSDiveristy
defense. The AppOSDiveristy defense is a general
purpose Moving Target defense that switches between
several different applications that provide the same
service. In our scenario, the defense switched between
two applications that provide the FTP service, ProFTP
and vsFtp. The agent exposes a number of controls
to the defense, including adding to or removing from
the list of machines currently involved in the defense,
setting the switching frequency

• FTP Agent. This agent monitors the status of the FTP
servers and reports the status of the FTP service to
the C2Agent. It does this by attempting to log into
the FTP service and retrieve a small file. The agent
counts and reports how many times the retrieval is
successful and how many times it is unsuccessful
during a specified time window. The C2Agent can
control this time window to enable faster, but noisier,
updates or slower, and more accurate, updates.

Figure 4 shows the flow of messages between the agents
used in this experiment. The principal function of the Cyber
C2 is to perceive the status of the environment (FTP Agent
sending FTP status to C2 Agent), present that information to
the operator (C2 Agent sending C2 Status to C2 Interface),
and then to make a decision and enact it (C2 Agent sending
AppOS Command to AppOS Diversity Agent).



Fig. 3. Network diagram of the enterprise network used in the experiment.

B. Experiment Description

There were four separate experiments conducted and each
were run multiple times to measure reliability and repeatability
of the data collected. They were:

1) No Attack (Control) While the defense was running,
the attacker machine was turned off and the two
FTP clients in each enterprise produced FTP traffic
at a constant rate. The behavior system logged in,
uploaded and then deleted a file from the server
and measured the successes, failures, iterations and
transfer metadata.

2) Attack The attacker machine was activated and
launched attacks on the public FTP site at regular
intervals. Because a moving target defense was in
use, there was only a single FTP url and the attacking
machine was unaware of which FTP it was attacking.
Thus, the expected result would be that only half of
the attacks and half of the FTP attempts would be
successful. This is the baseline that is used to measure
any improved defense has on the system.

3) Control Change In this experiment, the C2Agent had
the ability to dynamically reconfigure the moving tar-
get defense. An agent monitored the FTP application
and log files and would trigger when it detected the
FTP service success rate start to diminish. It would
change the moving target defense settings to favor
the FTP that was unaffected by the malicious actor.
By configuring the moving target defense to use a 4:1
(20%) ratio instead of a 1:1 (50%), it is expected that
the number of successful attacks will go down while
the number of successful FTP attempts will go up.

4) Further Change The C2Agent reduced the time spent
in the vulnerable FTP service to 10% of the available
time, where we expect to see further performance
gains.

The results of the experiment are shown in Table I and
Figure 5. Table I shows the ”dwell percent”, which is amount
of time spent in each FTP application, the number of FTP
attempts, the number of failed attempts, and the overall per-
centage of successful FTP connections. Interestingly, even with
no attacks being run, there were a few failed FTP attempts.
We have yet to analyze the experiment data to determine the
cause of the failure.

Starting the attacks has a significant, immediate effect
on the FTP success rate. With the AppOS Diversity defense
running and spending an equal amount of time using each FTP
server, the success rate is the lowest seen. This is because 50%
of the time, the Cyber C2 chooses a vulnerable application to
provide the FTP service. The reason the success rate is not 50%
exactly is that the time to recover from an attack is slightly
longer than the time to complete an FTP session. Therefore,
more successful FTP transfers than failures occur during the

Fig. 4. Communication pattern of agents used in the experiment.



TABLE I. SUMMARIZATION OF EXPERIMENT RESULTS

Fig. 5. Control changes to defense results in improved access to protected
service.

same time interval.

Changing the control so that only 20% of the time is
spent in the vulnerable service improves performance (Control
Change), and reducing it to 10% improves performance still
(Further Change). Eventually, the C2 will eliminate the vulner-
able FTP application from being used, as long as the other FTP
application continues to successfully respond to FTP requests.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have motivated the need for proactive,
adaptive Cyber C2, and presented several requirements for
building one. We discussed our distributed communication
and computation infrastructure called MIRA, and showed an
example scenario run in our experimentation infrastructure,
showing the effects of controlling a moving target defense
control parameter.

Our next step for the research into resilient Cyber C2
systems is to quantify the effects of defense deployment and
parameter changes in order to make better decisions during
subsequent attacks. Additionally, we are expanding the scope
of experimentation to include scenarios with incremental re-
sponses, such as terminating/redirecting/isolating connections,
locking out/logging out users, killing processes, or quarantin-
ing messages.

Our next steps in the development of the MIRA infrastruc-
ture are creating additional providers, such as interfacing with
Kafka as a PubSubService provider, and using ZeroMQ as a
MessagingService provider. We have also started the process
of creating an open-source version of MIRA, OpenMIRA, that
should be available soon.
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