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Abstract. Developing trust in intelligent agents requires understand-
ing the full capabilities of the agent, including the boundaries beyond
which the agent is not designed to operate. This paper focuses on apply-
ing formal verification methods to identify these boundary conditions
in order to ensure the proper design for the effective operation of the
human-agent team. The approach involves creating an executable spec-
ification of the human-machine interaction in a cognitive architecture,
which incorporates the expression of learning behavior. The model is
then translated into a formal language, where verification and validation
activities can occur in an automated fashion. We illustrate our approach
through the design of an intelligent copilot that teams with a human in
a takeoff operation, while a contingency scenario involving an engine-
out is potentially executed. The formal verification and counterexample
generation enables increased confidence in the designed procedures and
behavior of the intelligent copilot system.

Keywords: Formal verification · Intelligent agents
Human-machine teams

1 Introduction

Autonomous systems are increasingly being designed to collaborate with humans
to accomplish safety critical tasks. These cooperative agents are typically
designed in modeling paradigms that emphasize human-machine interactions,
efficiency, learning and performance improvement. However, operators mitigate
safety and operational risks in an adaptive manner on a frequent basis, and the
system often relies on this mitigation.

Our research focuses on the development of assurance for cooperative agents
that can execute tasks autonomously, work with environmental variations and
improve their own performance and the performance of the cooperative system
overall. We translate the knowledge representations used by the cooperative
agent into a formally verifiable representation to ensure that any modification
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to the agent behavior learned during operation will conform to the individual
and system-level requirements specified during design and deployment. In this
paper, we discuss an initial version of our automated translator and how this
translation is achieved through a model transformation from an agent knowledge
representation into a formally verifiable framework. Our technique provides a
proof of concept for how the formal verification of autonomous agents could be
utilized for safety critical applications.

Contribution. Frameworks for specifying autonomous cooperative agents usu-
ally lack the inherent capability for rigorous analysis, such as the formal ver-
ification and validation of safety critical properties. Our approach is novel in
that it allows for the direct use of formal tools to verify safety properties of an
autonomous agent designed in an existing cognitive architecture (Fig. 1). Thus,
the formal verification process can be integrated into the design process of the
agent. We believe this to be a unique contribution, which is, to the best of our
knowledge, not currently otherwise utilized between other common intelligent
agent frameworks (e.g., ACT-R, EPIC, PRS etc.) and formal methods (e.g.,
SMV, PVS, IC3 etc.).

We next review related work in Sect. 2. A target cognitive architecture and
formal verification framework is selected in Sect. 3. We outline an example
human-cooperative agent scenario involving an aircraft engine-out case study
in Sect. 4. A formal description of the automated translation process between
the cognitive architecture and verification formalism is provided in Sect. 5, along
with implementation particulars. Section 6 discusses the results of the verifica-
tion and validation efforts on the case study, and modifications made to the
agent as a result. Conclusions and future work are detailed in Sect. 7.

Fig. 1. System modeling and verification process

2 Related Work

Rule-based reasoning systems, or production systems, have been a popular
method in Artificial Intelligence for producing intelligent behavior that is
understandable to the program operator. Common rule based reasoning sys-
tems include the General Problem Solver (GPS) [1], the MYCIN knowledge
based inference system [2], the Adaptive Control of Thought-Rational Theory
(ACT-R) [3] and the Soar cognitive architecture [4]. Rule-based reasoning frame-
works facilitate adaptation in two ways: creating new rules and modifying
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rule order. Creating new rules can occur by identifying a new set of conditions
under which an action should occur (called new rule learning) or by combin-
ing a number of rules together to form a single rule that makes execution of
the set more efficient (called chunking) [4]. Rule order can be modified through
reinforcement learning, which optimizes rule order based on a criteria such as
minimum number of rule firings to reach a goal or minimizing overall time to
execute [5]. However, none of these modeling frameworks, which support learn-
ing behaviors, possess a formal semantics, and do not naturally support formal
verification. Research efforts [6] extend ACT-R based on a discrete event sim-
ulation formalism, however, this does not encompass systems with continuous
dynamics.

Research efforts in the area of verification of adaptive architectures for auton-
omy include work done on Rainbow CMU [7], which focuses on dynamic sys-
tem adaptation via architecture models, along with potential formal guarantees.
Research conducted by Wen [8] focuses on constraining the inputs to learning
systems in order to synthesize systems that are correct by construction. Sharifloo
and Spoletini [9] describes the use of lightweight formal verification methods for
runtime assurance when a system is updated with a new component. In [10],
Curzon discusses the development of a formal user model to develop a generic
approach to cognitive architecture, but does not integrate this work with an
existing architecture. Additionally, the formal verification of an autonomous
system is discussed by O’Connor [11], and is based on the design of a mission
controller with timed automata; however this does not enable the modeling of
cognitive components. None of these efforts provide support for rigorously ana-
lyzing existing cognitive decision procedures implemented through an existing
cognitive architecture.

NASA has developed PLan Execution Interchange Language (PLEXIL) [12],
which has been successfully deployed for several autonomyapplications. PLEXIL's
operational semantics has been formally specified in the Prototype Verification
System (PVS) [13] and properties such as determinsim and compositionality
were mechanically verified in PVS [14]. Architecturally, the executable seman-
tics in PLEXIL are specified in the rewrite logic engine Maude [15] for formal
verification of the plans. Several efforts have focused on the use and analysis of
PLEXIL, such as Strauss's efforts in analysing execution semantics in Haskell [16].
Balasubramanian et al. have developed Polyglot, a Statecharts analysis framework
for PLEXIL, and are investigating formal analysis of a Statechart-based semantics
of PLEXIL [17]. Verdejo and Mart́ı-Oliet [18] have investigated the development
of tools from the operational semantics specified in Maude. In our approach we
utilize a similar paradigm of having the plans represented as rules in Soar, which
are translated into Uppaal for verification. The additional benefit provided by our
approach is that Soar has learning capabilities embedded within its architecture.
The authors have also developed a navigation agent for drones in enclosed areas via
the proposed methodology for direction selection [19]. In this paper, we extend this
previous work by designing and implementing an autonomous agent that performs
decision-making processes in the context of human teamwork. We next discuss the
modeling formalisms used to support this work.
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3 Modeling and Formal Verification

The goal of the research is to be able to model and ultimately design human
and automated agent interactions, thereby enabling a shifting locus of control
from human agents to automation in a variety of domains. This will entail
automated agents performing complex safety-critical tasks in conjunction with
human supervisors, which may result in possibly inimical emergent properties.
In order to avoid this, we wish to map cognitive task models or operations into a
formal language, where safety and liveness invariants can be verified. We consid-
ered several cognitive frameworks in order to model human interactions, as well
as several formalisms for verification purposes. We detail the process of choosing
a framework and formalism in Subsects. 3.1 and 3.2.

3.1 Cognitive Architectures and Frameworks: Soar

Cognitive architectures, which are often candidates for a general theory of cogni-
tion, can be regarded as architectures for the expression of intelligent behavior.
We surveyed several rule based reasoning systems as candidates for modeling
human-automation interactions [1–4]. Soar was selected based on its ability to
encompass multiple memory constructs (e.g., semantic, episodic, etc.) and learn-
ing mechanisms (e.g., reinforcement, chunking etc.). Furthermore, Soar produc-
tion rules are expressed in first order logic, which makes them amenable to
verification. Finally, Soar takes the form of a programmable architecture with
an embedded theory; this leads to the ability to execute Soar models on embed-
ded system platforms, which enables the study of the design problem through
the use of rapid prototyping and simulation.

Production Rules Expressed in the Soar Representation. Every Soar
production rule starts with the symbol sp, which stands for Soar production.
The remainder of the rule body is enclosed in braces. The body consists of the
rule name, followed by one or more conditions expressed in first order logic,
then the symbol →, which is followed by one or more actions (also expressed in
first order logic). In Soar, a state variable (expressed as <variable>) can have
multiple features or attributes, where features or attributes are indicated by the
symbol ˆ. An attribute can take on a value, which is stated in the string following
the attribute. So, the Soar expression: (<s> ˆ superstate nil) means that the
state variable s has a feature, called superstate, whose value is nil. An example
Soar rule is:

sp{proposeInitialiaze(state <s> −ˆname ˆsuperstate nil) →
(<s> ˆoperator <o>)(<o> ˆname initialize)}

The Soar rule proposeInitialize has the condition where the state variable
s has the attributes name (whose value is unassigned) and superstate (whose
value is nil). The Soar feature superstate is an internal mechanism that Soar can
use as part of its processing of goal-subgoal hierarchies. The condition where
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the feature superstate holds the value nil, and there is no associated operator,
indicates that Soar has just been invoked and no processing has been done yet.
This subgoal hierarchy capability is not used in the example in Sect. 4, and
therefore the superstate is only used to initialize the agent that is processing.
So, in this case, the precondition is that no superstate exists and that there is no
pre-existing name for the state <s>. The right hand side (RHS) of the rule is the
post condition or action, which indicates that given the LHS is true, an operator
<o> is associated with the state <s> and that an attribute of the operator is
its name, which has a value initialize.

Soar production rules commonly execute in pairs of propose and apply rules.
The propose rule checks which Soar production rules are eligible to be executed,
and the corresponding apply rule executes one of the eligible rules. In Sects. 4
and 5, we used the Soar production system framework to encode rules describing
takeoff procedures for an automated copilot in a commercial aircraft. The Soar
framework facilitated development of the automated copilot agent. Furthermore,
the first order logic representation of the production ruleset facilitates its trans-
lation into an appropriate modeling formalism for formal verification, as detailed
in the next subsection.

3.2 Formal Languages and Verification: Uppaal

In order to choose the correct platform to translate Soar models into for the pur-
pose of verification, several formalisms such as NuSMV [20], Uppaal [21], PVS
[22] and Z3 [23] were considered carefully. We chose Uppaal [21,24,25], due to
its ability to model timing aspects that are critical for cyberphysical systems, as
well as its ability to generate and visualize counterexamples. Uppaal models are
represented by timed automata, and the compositionality enabled by the Uppaal
formalism supports model checking over networked timed automata using tem-
poral logics. This modeling paradigm allows the execution of requirements as
temporal logic queries to exhaustively check the satisfaction of relevant safety
properties. We next describe the timed automata formalism used by Uppaal.

Mathematical Representation in Uppaal. Uppaal uses timed automata
[26], a subset of hybrid automata, as a modeling formalism. One of the essential
requirements in the design of human-agent teams is to be able to model the
time associated with the execution of operations or rules. A timed automaton
is a finite automaton extended with a finite set of real-valued clocks. Clock or
other relevant variable values can be used in guards on the transitions within
the automaton. Based on the results of the guard evaluation, a transition may
be enabled or disabled. Additionally, variables can be reset and implemented as
invariants at a state. Modeling timed systems using a timed-automata approach
is symbolic rather than explicit, and allows for the consideration of a finite
subset of the infinite state space on-demand, i.e., using an equivalence relation
that depends on the safety property and the timed automaton, which is referred
to as the region automaton. There also exists a variety of tools to input and
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analyze timed automata and extensions, including the model checkers Uppaal,
and Kronos [27]. For the purpose of this paper, we represent timed automata
formally as follows.

Definition 1 Timed Automaton (TA). A timed automaton is a tuple (L, l0,
C,A,E, I), where L is a set of locations; l0 ∈ L is the initial location; C is
the set of clocks; A is a set of actions, co-actions and the internal τ -action;
E ⊆ L × A × B(C) × 2C × L is a set of edges between locations with an action,
a guard and a set of clocks to be reset; and I : L → B(C) assigns invariants to
locations.

We define a clock valuation as a function u : C → R≥0 from the set of clocks to
the non-negative reals. Let R

C be the set of all clock valuations. Let u0(x) = 0
for all x ∈ C. If we consider guards and invariants as sets of clock valuations
(with a slight relaxation of formalism), we can say u ∈ I(l) means that u satisfies
I(l). We can now define the semantics of a timed automaton as follows.

Definition 2 Timed Automaton (TA) Semantics. Let (L, l0, C,A,E, I) be
a timed automaton TA. The semantics of the TA is defined as a labelled transi-
tion system 〈S, s0,→〉, where S ⊆ L×R

C is the set of states, s0 = (l0, u0) is the
initial state, and →⊆ S × {R≥0 ∪ A} × S is the transition relation such that:

1. (l, u) d−→ (l, u + d) if ∀d′:0 ≤ d′ ≤ d ⇒ u + d′ ∈ I(l) and
2. (l, u) a−→ (l′, u′) if ∃e = (l, a, g, r, l′) ∈ E such that u ∈ g, u = [r �→ 0]u and

u′ ∈ I(l),

where for d ∈ R≥0, u + d maps each clock x in C to the value u(s) + d, and
[r �→ 0]u denotes the clock valuation which maps each clock in r to 0 and agrees
with u over C \ r.

Note that a guard g of a TA is a simple condition on the clocks that enable
the transition (or, edge e) from one location to another; the enabled transition
is not taken unless the corresponding action a occurs. Similarly, the set of reset
clocks r for the edge e specifies the clocks whose values are set to zero when
the transition on the edge executes. Thus, a timed automata is a finite directed
graph annotated with resets of, and conditions over, non-negative real valued
clocks.

Timed automata can then be composed into a network of timed automata
over a common set of clocks and actions, consisting of n timed automata TAi =
(Li, li0, C,A,Ei, Ii), 1 ≤ i ≤ n. This enables us to check reachability, safety and
liveness properties, which are expressed in temporal logic expressions, over this
network of timed automata. An execution of the TA, denoted by exec(TA) is the
sequence of consecutive transitions, while the set of execution traces of the TA
is denoted by traces(TA). We next consider a simple flight example involving
the interaction of human pilot with an autonomous copilot in a contingency
situation where an engine becomes disabled during aircraft takeoff. We shall use
this example to illustrate the process by which a Soar model is translated into
Uppaal, and then we shall attempt to verify the design of the automated copilot
model, with respect to simple safety and reachability properties.
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4 Example Case Study: Engine Out Contingency During
Takeoff

The example used to illustrate this technique was that of an engine-out contin-
gency upon takeoff. Conventionally defining the term pilot flying (PF) as the agent
designated as being responsible for primary flight controls in the aircraft (e.g.,
stick and surface inputs), and pilot not flying (PNF) as the agent not responsible
for primary flight controls, has the Soar agent assuming the role of PNF. Thus,
the Soar agent monitors procedure execution for off nominal or contingency situ-
ations, as well as performs secondary actuation tasks, similar to those performed
by a copilot. However, it is important to note that the human pilot is always ulti-
mately responsible for the overall safe execution of the flight [28].

For illustrative purposes, consider the scenario of a large cargo aircraft (such
as a Boeing 737) during takeoff which experiences an engine failure, whereby
the engine is delivering insufficient power after the aircraft brakes have been
released, but before the aircraft takeoff has been successfully completed. Prior
to takeoff, the speed V 1 is calculated, which is defined by the FAA as “the
maximum speed in the takeoff at which the pilot must take the first action (e.g.,
apply brakes, reduce thrust, deploy speed brakes) to stop the airplane within the
accelerate-stop distance” [29]. Thus, V 1 is a critical engine failure recognition
speed, and can be used to determine whether or not the takeoff will continue, or
result in a rejected takeoff (RTO). V 1 is dependent on factors such as aircraft
weight, runway length, wing flap setting, engine thrust used and runway surface
contamination. If the takeoff is aborted after the aircraft has reached V 1, this
will likely result in a runway overrun, that is, the aircraft will stop at a point in
excess of the runway. Thus, V 1 is also seen as the speed beyond which the takeoff
should continue: the engine failure is then handled as an airborne emergency.

A conventional takeoff, whereby humans fill the PF and PNF roles, proceeds
as follows. Both pilots review any changes in the ATC clearance prior to initiating
the Before Takeoff (BT) checklist. All Before Takeoff checklist items must be
completed before the takeoff roll commences. Once the checklist is completed,
the Takeoff procedure is performed as detailed in Fig. 2. It can be seen that
there is a great deal of interplay between the PF and PNF, especially in terms of
affirming tasks and settings through callouts. These callouts also serve to initiate
the subsequent task in the procedure. Thus, any tasks that are delegated to
an automated PNF, performing the copilot role, must mimic this annunciation
structure, in order to preserve situation awareness in the cockpit, and foster
teamwork in the human-automation team. In the case of an engine failure at
a speed of less than V 1, but above the lower threshold speed of 80 kts, the
Contingency procedure shown in Fig. 3 is called from within the nominal Takeoff
procedure.

These two operational procedures can be used to create a Soar production
system, which models the behavior of the copilot, and can be executed, thereby
creating an automated copilot function for takeoff. This process results in the
creation of 15 Soar production rules. We now detail the process whereby the
set of Soar production rules is translated into a network of timed automata, in
Sect. 5.
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Fig. 2. Nominal takeoff procedure [30] Fig. 3. Contingency procedure for engine
out on takeoff [30]

5 Automated Translation from Cognitive Architecture
to Formal Environment

The process of translation from Soar to Uppaal captures our understanding of the
differences in the cognitive model and its formal representation. We have auto-
mated the Soar to Uppaal translation for a subset of Soar models. This includes
translation of conditions in a production rule represented with variables, opera-
tors, disjunctions, conjunctions as well as for action items adding new elements
to working memory, and creating preferences for two among twelve preferences.
Further support needs to be added for multi-attribute rules, creating the remain-
ing ten preferences and implementing translation of other action items such as
mathematical operations.

Figure 4 shows the sequential operations the translator goes through, which
are (1) lexical analysis, (2) semantic parsing, (3) symbolic and syntax analysis
and (4) generating the Uppaal .xml file.

Given the grammar describing the Soar productions, Another Tool for Lan-
guage Recognition (ANTLR) was used to parse Soar, resulting in a syntax
tree for further translation. From this tree, symbols—local variables used in
productions—are extracted to add to the Uppaal model. Each Soar production
can then be mapped to one or more Uppaal actions, which must then fire in a
sequential fashion; meanwhile each Soar syntactical element must be mapped to
the corresponding Uppaal element. Once the parser is created, it parses the Soar
file to generate the graphical tree for a Soar rule.
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Fig. 4. Model transformation from Soar to Uppaal

In the Antlr grammar, the rule is parsed based on identifying if it is a Soar
rule followed by if it is a Soar production. Once it is confirmed to be a Soar
rule then the parser identifies if it is the LHS or RHS of the rule. If it is the
LHS the condition parameters and the variables are identified. If it is the RHS
of the rule, action parameters are identified along with the variables, expression
and preferences. Once the trees are generated, the Soar rule is translated into a
Timed Automaton (TA).

5.1 Automated Translation to Uppaal

In order to give a formal representation of the translation process, we consider the
restricted subset of Soar production systems whose rules are represented using
first order logic. We can then define a Soar production rule as a function of a
finite set of variables V ∈ vi, i = 1, 2, 3 . . . n, whose valuation val(V ) represent
the state of the system, along with a finite set of well formed formulae (WFF)
Φ = {φ1, φ2, . . . φm}, representing the left hand side of the Soar production
rule (e.g., the preconditions), and a finite set of WFF Ψ = {ψ1, ψ2, . . . ψr},
representing the actions embodied by the right hand side of the Soar production
rule. We use the following formal definition for Soar production rules.

Definition 3. An individual rule in cognitive model CM is represented as
a tuple rname(V, Pre(Φ), Post(Ψ)) where there are i = 1...n variables, m
well formed formulae in the precondition {φ1(vj), φ2(vk), ...φm(vl)}, and r well
formed formulae in the postcondition {ψ1(vs), ψ2(vu), ...ψr(vw)}.
Each WFF (φ or ψ) may depend on a subset of the variables in V , as well as
constants. Preconditions and postconditions can be formed through the use of
first order logical operators (e.g., ∨,∧,∀ etc.) over WFF. The execution or firing
of a production rule creates an observable change in the system state, which
can be denoted by fire(rname). The goal is to map the semantics of a Soar
production rule onto the semantics of a Uppaal TA. For the translation to be
correct, we wish to have the behavior of the cognitive model be equivalent to
the behavior of the network of TAs, at least with respect to the properties being
verified. Each Soar production rule generates a TA in Uppaal, and the set of
all TAs compose into a networked TA that corresponds to the cognitive model
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embodied by the Soar production rules. However, due to the nature of timing
captured in Uppaal, we must also generate a scheduler (see Fig. 5), which forces a
production rule and its corresponding TA to fire if one is available to do so. After
any TA in the network has fired, the scheduler evaluates whether the goal state
of the cognitive model has been reached. If this is not the case, the scheduler
broadcasts the action Run Rule, which causes an automata whose preconditions
are enabled to fire. The Run Rule action also allows the TA corresponding to
the previously fired production rule to reset, rendering it immediately available
to fire at the next evaluation of the TA network.

Specifically, each individual TA corresponding to a production rule has a
Start state and a Run state, and a single clock x, whose value is given by
u(x) = val(x). Roughly speaking, the guard conditions for the TA correspond
to the preconditions of the production rule. Similarly, the actions of the TA can
be represented by the postconditions of the production rule. For example, at
the start of the TA network execution, the guard condition for the initialization
Soar production rule (Fig. 6) is the only rule that is true. This corresponds to the
Soar representation where the guard condition, superstate is equal to nil, is true
at initialization. Thus, the TA corresponding to the initialization rule executes
when the scheduler sends out the Run Rule broadcast shown in Fig. 5. During
execution of the initialization rule, the values of variables on the RHS of the rule
are updated, which changes guards for other rules to become true. After any TA
executes, the scheduler transitions to the Check state on its own guard condition,
which is a negation of the goal. If the goal is not met, the scheduler transitions
from the Check to the Run state, and broadcasts the Run Rule action to all TA,
enabling further TA execution.

Fig. 5. Generic scheduler for timed automata derived from Soar rules

We briefly describe the algorithm as follows. The algorithm takes as its
input a tuple rname(V, Pre({φ1, φ2, ...φm}), Post({ψ1, ψ2, ...ψr})), which is a
rule from the Soar CM , and translates it to a timed automaton TA =
(L, l0, C,A,E, I). The first line of the algorithm requires that all preconditions
Pre({φ1, φ2, ...φm}) and postconditions Post({ψ1, ψ2, ...ψr}) in the Soar rule be
well formed formulae. It also requires that a valuation function u(x) for the
clocks x of the TA be defined over the non-negative reals. If the conditions spec-
ified in the requirements line are met, then the second line of the algorithm states
that the property of the traces of the generated TA containing all the behaviors
exhibited by the firing of the Soar rule is ensured.
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Algorithm 1. Generate (S, s0,→) for TA = (L, l0, C,A,E, I) from
rname(V, Pre({φ1, φ2, ...φm}), Post({ψ1, ψ2, ...ψr}))
Require: ∀φ(vi), ψ(vi) ∈ WFF,, u: C → R≥0

Ensure: fire(rname) ⊆ traces(TA)
l0 ← {Start}
L ← {Start, Run}
s0 ← (Start, u(x0))
S ← {Start, Run} ×u(x)
I(Start) = {True}
I(Run) = {True}
G = { }
A = {Run Rule}
for j = 1 to m do

G ← G ∧ φj

end for
for k = 1 to r do

A ← A ∧ ψj

end for
if u ∈ I(Start) and L = {Start} then

e1 = (Start, A, G, u �→ u′, Run)
end if
if u′ ∈ I(Run) and L = {Run} then

e2 = (Run, Run Rule, {}, u′ �→ u′′, Start)
end if
E = {e1, e2}
S′ u(x)∪A←−−−−− S

return TA = (L, l0, C, A, E, I)

The next eight lines of the algorithm (lines 3–10) are used to initialize the
elements of the TA and portions of its semantics, namely: (1) the set of initial
locations l0, (2) the set of locations L, (3) the set of initial states s0, (4) the set of
states S, (5) the invariant at the initial location, (6) the invariant at the location
after the TA has executed its transition, (7) the set of actions of the TA, and
(8) the set of guards for the TA. The Soar rule has two locations associated with
it: (1) Start = val(V (u)), which describes the valuation of the state variables
given in the Soar rule, before it has been fired, and (2) Run = val(V (u′)), which
describes the valuation of the state variables given in rule after it has been
fired. The state space is given by the cross production between the locations and
clocks. There are no invariants at the locations, as currently non-determinism is
handled in a sequential fashion, and the set of guards is initially set to empty.
The set of actions for each TA created from a Soar rule has the base action
Run Rule, which is generated by the global scheduler, and used to guarantee
execution. The Run Rule action is received by all TA, and it forces all enabled
TA (i.e. TAs whose guards are true, and thus, all Soar rules whose preconditions
are true) to execute.



Formal Assurance for Cooperative Intelligent Autonomous Agents 31

The first for loop (lines 11–13) is used to create the guard for the TA tran-
sition from the location Start to the location Run, and captures the condition
portion of the Soar rule, by creating a conjunction of all of the preconditions
(left-hand side) expressed by that rule. These are the preconditions that are
needed for the Soar rule to fire, and are dependent on variables such as time.
The second for loop (lines 14–16) is used to define the actions for the TA tran-
sition from the location Start to the location Run, and captures the action
portion of the Soar rule, by creating a conjunction of all of the postconditions
(right-hand side) expressed by that rule, along with the base action Run Rule.
These are the actions taken once the Soar rule fires (and the scheduler broadcast
Run Rule has been received), and act to change the state variables V , described
in the Soar rule, of the system.

The next if statement (lines 17–19) creates the edge from the Start location
to the Run location in the TA semantics. The origin and destination locations
are Start and Run respectively. The set of actions A and guards G for this
transition were defined by the previous two for loops. The clock is not reset on
the edge, and thus its valuation advances from u to u′. Note that the conditional
for forming the edge was that the initial clock valuation satisfied the invariant at
the origin location of the edge. The following if statement (lines 20–22) creates
the TA edge from the Run location to the Start location. This enables the TA to
be reset after firing by the next broadcast of the Run Rule action by the global
scheduler. Thus, this mimics the behavior that the Soar rule is immediately able
to be refired in the cognitive model. The origin and destination locations of the
edge are Run and Start respectively. The Run Rule action must be received for
the reset to occur, and thus is the only action for the edge. There are no guards
on this edge, and the clock is not reset, enabling time to progress from u′ to u′′.
Lines 23–24 form the semantics for the TA by specifying the set of edges and
transitions. Finally, in line 25, the algorithm returns the TA generated from the
Soar rule rname(V, Pre({φ1, φ2, ...φm}), Post({ψ1, ψ2, ...ψr})).

We now walk through an example of this translation process as seen in Algo-
rithm1, for the rule given in Fig. 6.

5.2 Translation Implementation

The name of the Soar rule proposeInitialize (see Fig. 6) in Uppaal is a template
name. To generate variable names, we linearize the working tree wherein each
possible traversal ending in a useful value becomes the concatenated string of
all visited identifiers during traversal (with an underscore as a delimiter). The
preconditions in this Soar rule states that it: (1) does not have a name for the
state sˆname and (2) state sˆsuperstate is nil. This is translated into the following
guard: state name == nil and state superstate == nil. The action in this Soar
rule is: state <s> ˆoperator <o> ˆname initialize. This gets translated into the
following TA action: s operator name = initialize.

The scheduler (Fig. 5) is designed to meet the following criteria: (1) It is con-
figurable to meet different cognitive architectures, (2) Precondition satisfaction
results in the selection of a rule to be executed, and (3) It tests the cognitive



32 S. Bhattacharyya et al.

sp {proposeInitialize 
(state <s> ^type state -^name ^superstate nil) 

--> 
(<s> ^operator <o> +)(<o> ^name initialize)}

Fig. 6. Mapping Soar to Uppaal

architecture goal condition to see if the goal has been reached. After the produc-
tion rules have all been translated into timed automata, and the scheduler has
been built, verification and validation activities can occur, as explained in the
next section. Elements of non determinism due to learning (that changes rules)
is challenging to translate into Uppaal as it is implicit in Soar.

6 Verification and Validation Efforts

6.1 Simulation Efforts for Validation of the Autonomous Pilot
Agent

To test the Autonomous CoPilot Agent in a number of different scenarios, we
connected the commercial X-plane aircraft simulation [31] with a shim that reads
the relevant aircraft state variables (e.g., speed, altitude, attitude, position) and
injects them into Soar’s working memory. The state variables are updated every
200 ms. The Soar agent captures the sensor value and then executes each rule
within 100 ms. After experimenting with the simulation environment the change
in velocity was set such that it changed every 150 ms with maximum accel-
eration. With this data sensor rate we minimize discrete jumps and attain a
more or less continuous change in the value for the velocity. The rules for nom-
inal takeoff and/or engine-out takeoff monitor the state of working memory to
ensure that the appropriate actions are taken when conditions warrant. Figure 7
shows the connection between the aircraft state variables and the Java-based
Soar Pilot Agent. This simulation was used to validate the autonomous copilot
design for takeoff through multiple flown scenarios. Usability scenarios involved
injecting engine faults at various times. Soar has an input/ouput link in its work-
ing memory which serves as the interface to different input output devices. The
output branch for a Soar model has a memory element/node called speech. The
autonomous agent adds children to this node; those children have literal string
values. These values are sent to a text to speech engine as they appear thereby
mimicking the interplay between the PF and PNF. The text to speech engine
is a standalone Python application which is called by the Jsoar wrapper. These
rules that initiate verbal interaction from the autonomous copilot are translated
into Uppaal, with the verbal command translated as an update or action item
for a variable representing the verbal communication.
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Autonomous Co-Pilot Agent

APA-SOAR Shim

Working Memory

Query Results

Aircraft State

Query

Command

Fig. 7. Block diagram of the simulation configuration

6.2 Formal Verification of the Autonomous Pilot Agent

The Soar rules for the autonomous agent that modeled the procedures followed
by a copilot were translated into Uppaal. The rules executed are based on inputs
received from the flight simulator; this necessitated the creation of inputs such as
airspeed. In order to provide changes to the airspeed, a new input template was
created within the Uppaal model in which the airspeed was updated at every
step of execution. We used a first order model for vehicle velocity which we plan
to refine. This was followed by proving properties in Uppaal such as:

– Airspeed greater than 80 is followed by applying rule for airspeed alive
R1 state io input link flightdata airspeed == 80 −− >
state operator name == callaa

– All paths eventually lead to calling out Airspeed Alive
R2 A<> state operator name == callaa

– All paths eventually lead to calling out rotate
R3 A<> state operator name == callrotate

– TakeOff shall be abondoned if there is engine out and velocity is below the
threshold
R4 state abandon == true −− > applycallAbandon 0.Run

The properties were proven on two sets of models. The first model repre-
sented the nominal Takeoff without any failures. The second model represented
the procedures followed for the engine-out use case. While verifying the above
properties such as R1, R2 and R3 in Uppaal on the first model, we encountered
an out of range exception, as shown in Fig. 8. This error was generated due to the
fact that at each cycle of the execution, Soar looks for a change in state caused
either by new working memory data being input, or modifications to working
memory data caused by rule execution. When there is no change in state it is
called an Impasse, and Soar attempts to generate a sub-goal to continue to make
progress towards a solution. The creation and resolution of sub-goals requires
a hierarchical decomposition of the problem space, which is not necessary for
straightforward examples. Instead, we introduce a counting mechanism which
forces a change in state. This is effectively a busy-wait state for new data in
Soar. The output of this counting can be unbounded and was never captured
in the Soar environment, as events always occurred in the environment before
the variable would overflow. But this unbounded variable overflow was captured
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while proving the property R1 in Uppaal on the nominal model. Hence, in peri-
ods where no events are taking place, it is possible for the copilot agent to time
out, in some respects.

The properties verified on the off nominal model, such as R4, prove suc-
cessfully indicating the copilot responds to the abandon event appropriately.
Presently, the use case is determinsitic so uncertainity was not included in the
model and translation, but both Soar and Uppaal allows probabilistic models,
thus there is the potential to include uncertainity in our future research efforts.
This will enable evaluating the efficiency of reordering the set of rules when a
contingency arises. This also enables us to model uncertainty due to sensor obser-
vation and modeling approximation along with reaction times taken by human
agents.

Fig. 8. Out of range error for translated Uppaal copilot agent

7 Conclusion and Future Work

Cognitive architectures have proven to be beneficial in the design of intelligent
adaptive systems, as they allow the integration of learning algorithms as plug-ins
within a defined architectural representation. Additionally, they allow represen-
tation of collaborative human-machine teaming by modeling the autonomous
agents working with humans. Presently, systems designed with these cognitive
architectures cannot be deployed for safety critical applications as the methods
to assure correctness of their behavior are inadequate. A significant contribution
of our work has been the development of an extensible framework for the design
and formal verification of systems whose intelligent attributes can be modeled in
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a cognitive architecture. We have formally described and implemented the auto-
mated model transformation that translates an intelligent agent into a formally
verifiable temporal logic based model. This translation enables formal verifi-
cation of cognitive models developed in cognitive architectures or rule based
systems such as Soar. We plan to extend this research to fully integrate multiple
learning methods that are capable of modifying rules within the system and for-
mally verifying the resulting system. We also intend to model uncertainty in the
system through the incorporation of probabilistic models. We plan to evaluate
merging Soar rules into one Uppaal template as otherwise the number of Uppaal
templates become fairly large.
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