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Abstract. Autonomous systems are designed and deployed in different
modeling paradigms. These environments focus on specific concepts in
designing the system. We focus our effort in the use of cognitive ar-
chitectures to design autonomous agents to collaborate with humans to
accomplish tasks in a mission. Our research focuses on introducing for-
mal assurance methods to verify the behavior of agents designed in Soar,
by translating the agent to the formal verification environment Uppaal.
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1 Introduction

Autonomous systems are increasingly being designed in different modeling paradigms.
Each of these focus on specific aspects of the design. For example, some methods
are based on an architectural modular approach with rule based design, whereas
others are focused on finite automata based models. In our research effort we fo-
cus on the design of autonomous agents based on the Soar cognitive architecture,
which is a rule based system. The benefits of Soar are as follows:

– Allows for the representation and modeling of procedure oriented autonomous
agents,

– Enables the modeling of human machine interactions.

These environments provide the paradigm to model autonomous agents, but
lack the capability for rigorous analysis to prove the satisfaction of properties.
In our approach, we discuss the initial version of the automated translator we
have developed, and more specifically how this translation is achieved through
a model transformation from Soar to Uppaal. This technique provides a proof
of concept for how the formal assurance of cognitive models could allow verified
agents to be designed for safety critical applications. In section 2, we discuss
briefly the design of an autonomous agent in Soar. We then follow this with a
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discussion of decision procedures in section 3, and elaborate on the production
system executing rules in Soar. The formal verification environment Uppaal is
discussed in Section 4, followed by a description of the automated translation
process in Section 5. Finally we discuss the engine out case study in Section 6.

Previous work Research efforts in the area of verification of adaptive archi-
tectures include work done on Rainbow CMU [1], [2] which focuses on dynamic
system adaptation via architecture models. It also investigates formal guarantees
for synthesis of adaptive strategies. Research conducted by Topcu [3] focuses on
constraining the inputs to learning systems in order to synthesize systems that
are correct by construction. Sharifloo in [4] describes the use of light weight for-
mal verification methods for runtime assurance when a system is updated with
a new component. None of these efforts have provided support for rigorously
analyzing existing adaptive decision procedures implemented through cognitive
architectures. Thus, the approach in this paper is unique in performing formal
verification of the production rules of a potentially learning system in a cognitive
architecture.

2 Autonomous agents in Soar

Our investigation into the formal verification of adaptive intelligent systems fo-
cuses on agents constructed using cognitive architectures, such as Soar or ACT-R
[5, 6]. Such agents can be used to develop new adaptive, intelligent systems for
use in cybersecurity command and control [7, 8] or adaptive, intelligent process-
ing [9].

In this research effort the Soar cognitive architecture is used to design an
autonomous agent that performs the decision-making processes of a co-pilot of
a large, multi-engine aircraft. We have modeled the co-pilot decision-making
responsibilities for normal take off and single engine out procedures. The cur-
rent research is based on earlier work developing Soar agents that modeled
reinforcement-based learning of optimal item ordering of take-off checklists and
of drone navigation in enclosed areas [10]. Figure 1 shows a block diagram of
the latter work, where the Decision Agent could learn acceptable flight paths by
watching the training paths flown by a human operator.

3 Production System Decision Procedures

Production systems have been a popular method in Artificial Intelligence for
producing intelligent behavior that is understandable to the program operator
[11, 12, 5, 6]. Productions systems represent knowledge as a set of “if-then” rules
that map between states of the system and actions that can initiate sensing
and take actions. For our drone navigation application, we developed a set of
rules that navigated a quad-copter through a flight space with simple obstacles
(i.e., regular, flat walls). The rules monitored the location and aircraft speed,
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Fig. 1. Overview of the prototype system.

direction, and attitude on the “if” side of the rules (the condition variables),
and made direction and attitude adjustments on the “then” side (the modified
variables).

Adaptation in the Decision Agent occurs in two ways: First, a reinforcement
learning procedure is executed to determine the best ordering of individual steps
in a checklist [13]. The adaptation from reinforcement learning here does not alter
the content of the rules, but instead alters the order of execution of the rules to
result in the least overall time spent [14].

Second, Soar’s “chunking” feature is used to collapse a number of rules that
are commonly executed as a sequence into a single rule. This feature does modify
the contents of the rules executed by the Decision Agent, and therefore intro-
duces some uncertainty in the validity of the new rules.

The question that is answered by this research is “Is the ruleset that results
from the adaptation valid?”. That is, does it meet the progress and safety re-
quirements demanded by the operator or mission, while improving its efficiency
or performance?

4 Formal Verification: Uppaal

The goal of the translation is to map the cognitive model into a formal language,
where progress and safety requirements can be verified completely. There are
several options for the formal language. We have chosen to map to the formalisms
of the language supported by Uppaal. Models in Uppaal are finite state machines.
The composition of the rules as finite state machines allows the representation
of formal modeling using temporal logics. This modeling paradigm allows the
execution of requirements as temporal logic queries to exhaustively check the
satisfaction of the properties. We describe the mathematical representation and
the different properties that can be verified next.
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4.1 Mathematical Representation in Uppaal

The rules are translated to formal, mathematically rigorous representations known
as timed automata, a subset of hybrid automata. According to timed automata,
one of the essential requirements in the design is to model the time associated
with the execution of operations or rules. To represent time, the components
need be modeled as timed automata. A timed automaton is a finite automaton
extended with a finite set of real-valued clocks. Clock or other relevant variable
values can be used in guards on the transitions within the automata. Based on
the results of the guard evaluation, a transition may be enabled or disabled.
Additionally, variables can be reset and implemented as invariants at a state.
Modeling timed systems using a timed-automata approach is symbolic rather
than explicit and is similar to program graphs. This allows verification of safety
properties to be a tractable problem rather than an intractable infinite one with
continuous time. So timed automata consider a nite subset of the innite state
space on-demand, i.e., using an equivalence that depends on the property and
the timed automaton, which is referred to as the region automaton.

Timed automata can be used to model and analyze the timing behavior of
computer systems, e.g., real-time systems or networks. Methods for checking
both safety and liveness properties have been developed. It has been shown that
the state reachability problem for timed automata is decidable, which makes this
an interesting sub-class of hybrid automata. Extensions have been extensively
studied, among them stopwatches, real-time tasks, cost functions, and timed
games. There exists a variety of tools to input and analyze timed automata
and extensions, including the model checkers Uppaal, Kronos, and Temporal
Logic Actions (TLA). These tools are becoming more and more mature. Formal
representation of timed automata is defined below.

Formally, timed automata can be defined as (Q, inv, , C, E, q0) where Q is finite
set of states or locations inv are location invariants Σ is finite set of events or
actions C is finite set of clocks E a set of edges, where an edge is a tuple (q, g, ,
r, q) defining a transition from state q to state q with a guard or clock constraint
g, an action or event , and an update or reset r.q0 is the initial state or location

4.2 Formal verification of autonomous behaviors

The translation of a cognitive model to a formal methods environment support-
ing temporal logics allows the formulation of properties as described next.

– E<> p it is possible to reach a state in which p is satisfied, i.e., p is true in
(at least) one reachable state (Figure 2 a).

– A[] p p holds invariantly, i.e., p is true in all reachable states (Figure 2 b).
– A<> p: The automaton is guaranteed to eventually reach a state in which

p is true, i.e., p is true in some state of all paths (Figure 2 c).
– E[] p p is potentially always true, i.e., there exists a path in which p is true

in all states (Figure 2 d).
– q − > p satisfaction of q eventually leads to p being satisfied (Figure 2 e)
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a) E<>p b) A[ ]p c) A<>p

d) E[ ] p e) q->p

Fig. 2. Temporal formulas in Uppaal

5 Automated Translation from IA to FE

The process of translation from Soar to Uppaal captures our understanding of
the differences in the cognitive model and its formal representation. We have
automated the translation for a subset of the Soar models. The steps in the
translation process include:

1. Developing the Soar grammar in Antlr
2. Generating the Soar parser
3. Storing the information from Soar into an intermediate data structure
4. Generating the xml for Uppaal

Figure 3 shows the sequential operations the translator goes through which
are lexical analysis, semantic parsing, followed by symbolic and syntax analysis
and then generating the Uppaal .xml file.

Fig. 3. Soar rule to initialize a variable
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5.1 Soar model

An simple Soar rule is shown below in Figure 4 for a counting system (example
counter). The example counter consists of three rules: the first rule initializes the
values of the variables, the second rule increments the value of counter, and the
third or goal rule checks if the final value has been reached. The rule in Figure 4
is the initialization rule for the counter. The left hand side (lhs) of the rule begins
with the required Soar symbology sp, which stands for Soar production, along
with the name of the production rule, followed by a pre-condition, for evaluation
purposes. Soar has a superstate, which is an internal mechanism that Soar can
use as part of its processing of goal-subgoal hierarchies. The condition where the
superstate is nil and there is no operator indicates that Soar has just started
and no processing has been done yet. This subgoal hierarchy capability is not
used in the example, and therefore the superstate is only used to initialize the
agent processing. So, in this case, the precondition is that no superstate exists
and that there is no pre-existing name for the state <s>. The right hand side
(rhs) of the rule is the post condition, which indicates that, given the lhs is true,
an operator is associated with the state <s> and that the name of the operator
is initialize counter.

Fig. 4. Soar rule to initialize a variable

The grammar for Soar is input to Another Tool for Language Recognition
(Antlr), in order to generate the Soar parser. Scripts from the Soar grammar are
shown in Figure 5. Once the parser is created, it parses the Soar file to generate
the graphical tree for a Soar rule. The graphical representation of the lhs of the
above Soar rule is shown in Figure 4 and the rhs is shown in Figure 5. These
two figures describe the tree structure associated with the Soar rule.

5.2 Automated Translation to Uppaal

DEFINITION 1: Rules in cognitive model (CM) are represented as a tuple
rname(pre(), post()) where Pre() are the preconditions within a rule, Post()
are the post conditions within a rule DEFINITION 2: The representation of a
rule in a formal model is a tuple tname(S,Init,E,G,U) where:

– S: are states in the formal model



LNCS 7

Fig. 5. Soar rule to initialize a variable

Fig. 6. Soar rule to initialize a variable

– Init: is initial state
– E SxS: represents the edges for transition
– G: represents the guard condition to be satisfied for the transition
– U: represents the reset value or actions or updates

Algorithm:

1. Translate individual rules rname(pre(),post())
(a) Identify name of the rule in CM translate to template or process or

component name in the formal environment (FE)
(b) Precondition in CM translates to Guard in FE

i. Identify the variables in CM in pre() create global variables in FE
ii. Identify the logical comparisons, bindings in CMcreate similar logical

equations and assignments in FE
(c) Postcondition translates to updates

i. Identify the variables and actions update the value of variables as
the actions

2. Generate scheduler schd(s,,e,g)
(a) Identify the lifecycle of execution

i. Select rules based on satisfaction of pre conditions
ii. Execute the rules

iii. Execute the goal test

One of the challenges in the translation is that Uppaal doesn’t support string
data types. So any string comparison or pattern matching in Soar is translated
into constant integers with the same name as the string in Soar.
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Translated Uppaal model The Soar model and its corresponding Uppaal
model is as shown in Figure 7 below. The name of the Soar model counter∗propose∗
initialize-counter in Uppaal is a template name. The preconditions in Soar states
that no superstate exists and it does not have a name for the state s superstate
nil and state sˆname is translated into a guard S Superstate == nil and S name
== nil. The postcondition() state <s>ˆoperator<o> ˆname initialize-counter
gets translated into s operator o name = initialize counter. For the first rule an-
other update s Superstate = not nil is automatically added as Soar implements
that behavior implicitly.

Fig. 7. Soar rule to initialize a variable

The general rule scheduler implements the process lifecycle. It contains three
states: Start, Run and Check, as shown in 8. The transition from the start
state to run state executes the initialization step for the system by broadcasting
Run Rule!. The initialization rule responds to it by initializing. The next step is
execution of the goal rule. If the goal is not satisfied, the scheduler transitions
from the Run to Check state on the guard condition, which is a negation of the
goal guard. Then from the check state, it transitions to Run state by sending
the broadcast Run Rule! to which the relevant rules respond.

Fig. 8. Generic Scheduler

The scheduler is so designed such that it meets the following criteria:

– Configurable to meet different cognitive architecture
– The satisfaction of the precondition selects the rule to be executed
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– Tests the goal condition to see if problem is complete

The property checked in the example of the simple counter was that all paths
eventually terminated when the counter reached the value 7. Another example
involved the design of a pilot agent in Soar that executes a sequence of tasks
for its mission which involved: preflight checks, flight planning, filing the plan,
launch, navigation, refuel, landing and arrival. The flight plan module in Uppaal
is as shown in Figure 9. The properties checked for the pilot agent involved
verifying that the pilot executed the appropriate sequences and also waited for
completion of previous tasks before iteratively executing the next sequence of
contingency tasks. The models translated from Soar generated counterexamples
that indicated that the pilot agent could get into a refueling task before ever
reaching a waypoint (and presumably landing). This was due to inadequately
designed guards in the Soar agent.

Fig. 9. Autonomous agent modules

Properties checked:

– All paths eventually lead to reaching destination state
A<> Goal.Goal

– Does there exist a point when the next waypoint is not reached but the navi-
gator says it has been reached
E<> t< Time To Next Waypoint and Navigate 0.Run

– Does there exist a condition where the next waypoint is not reached but the
UAV is trying to refuel
E<>Waypoint Navigator 0.Run and Refuel 0.Run

– Does there exist a path where fuel is not checked
E[] Check Fuel == false

6 Example Case Study: Engine Out Contingency During
Takeoff

The example used to illustrate this technique was that of an engine-out contin-
gency upon takeoff. Conventionally defining the term pilot flying (PF) as the
agent designated as being responsible for primary flight controls in the aircraft



10 LNCS

(e.g., stick and surface inputs), and pilot not flying (PNF) as the agent not re-
sponsible for primary flight controls, has the Soar agent assuming the role of
pilot not flying for this example. Thus, the Soar agent monitors procedure exe-
cution for off nominal or contingency situations, as well as performs secondary
actuation tasks, similar to those performed by a copilot. However, it is important
to note that the human pilot is always ultimately responsible for the overall safe
execution of the flight [15].

For illustrative purposes, consider the scenario of a large cargo aircraft (such
as a Boeing 737) during takeoff which experiences an engine failure, whereby
the engine is delivering insufficient power after the aircraft brakes have been
released, but before the aircraft takeoff has been successfully completed. Prior
to takeoff, the speed V 1 is calculated, which is defined by the FAA as ”the
maximum speed in the takeoff at which the pilot must take the first action (e.g.,
apply brakes, reduce thrust, deploy speed brakes) to stop the airplane within
the accelerate-stop distance [16]. Thus, V 1 is a critical engine failure recognition
speed, and can be used to determine whether or not the takeoff will continue,
or result in a rejected takeoff (RTO). V 1 is dependent of factors such as aircraft
weight, runway length, wing flap setting, engine thrust used and runway surface
contamination. If the takeoff is aborted after the aircraft has reached V 1, this
will likely result in a runway overrun, that is, the aircraft will stop at a point in
excess of the runway. Thus, V 1 is also seen as the speed beyond which the takeoff
should continue: the engine failure is then handled as an airborne emergency.

Prior to the takeoff procedure, a minimum of one person qualified to operate
aircraft engines must be seated in a pilot’s seat when an aircraft engine is started,
or running. Prior to taking the active runway for takeoff, the PF performs the
following actions, and briefs the PNF with respect to:

1. special factors influencing this takeoff (wet runway, anti-icing requirements,
crosswind, deviations from the norm, etc.),

2. verification of airspeed settings (bugs) and power settings,
3. verification of navigation equipment setup,
4. verification of initial flight clearance (headings, altitudes, etc.), and
5. review of the emergency return plan.

Thus, there must be a shared situation awareness regarding the contingency
plan at this point. In this standard briefing of the emergency return plan, the
issue of engine failure is discussed. For takeoffs that experience any warning light
or reason before 80 Knots-Indicated-Airspeed (KIAS), the takeoff is aborted [17].
After exceeding this lower threshold, but before attaining V 1, the takeoff is only
aborted in the case of engine fire or failure, thrust reverser deployment, aircraft
control problems and warning conditions.

A conventional takeoff, whereby two humans fill the roles of the pilot flying
and pilot not flying proceeds as follows. Both pilots review any changes in the
ATC clearance prior to initiating the Before Takeoff (BT) checklist. All Before
Takeoff checklist items must be completed before the takeoff roll commences.
Once the checklist is completed, the following tasks are performed (see Table
1 below). Note that the aircraft parking brake must be released on the active
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Fig. 10. Nominal Takeoff Procedure [17]

runway, and that the takeoff power (approximately 95 % N1, which is the revo-
lutions per minute of the low pressure spool of the engine) must be set prior to
attaining 60 KIAS.

During the Takeoff procedure, the PF and PNF perform the following se-
quential actions described in Figure 10, often waiting for a task initiation cue
that comes from one another.

It can be seen that there is a great deal of interplay between the PF and
PNF, especially in terms of affirming tasks and settings through callouts. These
callouts also serve to initiate the subsequent task in the procedure. Thus, any
tasks that are delegated to an automated PNF, performing the copilot role, must
mimic this annunciation structure, in order to preserve situation awareness in
the cockpit, and foster teamwork in the human-automation crew. Now, in the
case of an engine failure at a speed of less than V1, but above the lower threshold
speed of 80 kts, the actions shown in Figure 11 are taken.

Note that the contingency procedure is imbedded in the nominal procedure,
and thus must be called from the nominal procedure.
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Fig. 11. Contingency Procedure For Engine Out on Takeoff [17]

6.1 Simulation and Experimentation with the Autonomous Pilot
Agent

To test the Autonomous Pilot Agent in a number of different scenarios, we
connected the commercial X-plane aircraft simulation [18] with a shim that reads
the relevant aircraft state variables (e.g., speed, altitude, attitude, position) and
injects them into Soar’s working memory. The rules for normal takeoff or engine
out takeoff monitor the state of working memory to ensure that the appropriate
actions are taken when conditions warrant it. Figure 12 shows the connection
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between the aircraft state variables and the Java-based Soar Autonomous Pilot
Agent

Fig. 12. Block diagram of the Simulation configuration

6.2 Formal Verification of the Autonomous Pilot Agent

The Soar rules for the autonomous agent that modeled the procedures followed
by a copilot were translated into Uppaal. The rules executed based on inputs
received from the flight simulator; this necessitated the creation of inputs such
as airspeed. In order to provide changes to the airspeed, a new input template
was created in which the airspeed was updated at every step of execution. This
was followed by proving properties such as:

– airspeed greater than 80 is followed by applying rule for airspeed alive
R1 state io input link flightdata airspeed == 80 −− >
state operator name == callaa

– All paths eventually lead to calling out Airspeed Alive
R2 A<> state operator name == callaa

– All paths eventually lead to calling out rotate
R3 A<> state operator name == callrotate
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While attempting to formally verify the above properties in Uppaal, we en-
countered an out of range exception, as shown in Figure 13. This error was gen-
erated as follows: While Soar is executing in a busy waiting state, it is updating
a counter variable without any bounds. It was never captured in the Soar envi-
ronment, as events always occurred in the environment before the variable would
overflow. But this unbounded variable overflow was captured while proving the
property R1 in Uppaal. Hence, in periods where no events are taking place, it
is possible for the copilot agent to time out, in some respects. Thus, translation
of these rules provide a way for understanding these cognitive environments for
designing safety critical autonomous agents.

Fig. 13. Error

7 Conclusion and Future work

This research shows a method for the formal verification of intelligent agents
designed with cognitive architectures that implement collaborative interactions
between humans and autonomous systems. We have successfully developed an
automated translator that translates a Soar agent into a formally verifiable Up-
paal model. This enables formal verification of models developed in Soar. We
plan to extend the translation to handle other constructs in Soar. This approach
can be extended to the verification of other cognitive architectures.
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