
Formal Verification of Intelligent Systems
Modeled as Decision Procedures

Siddhartha Bhattacharyya, Thomas C. Eskridge and Marco Carvalho

Motivation

• Autonomous agents are controlling or coordinating
autonomous systems to autonomously execute
missions in battle space, civil airspace, cyber
space

• Autonomous agents can be designed as

– Cognitive architecture (Soar, ACT-R)

– Perception, production system, memory

• Autonomous agents need to be rigorously
analyzed to guarantee satisfaction of
requirements, correctness to build trust on them

2

Research Challenges
• Cognitive architecture provides a simulation

environment but lacks rigorous analytical
capability

– Translation into formal environment enables
analytical capability

• Addressing the differences in the cognitive model
and formal verification

– Lack of visibility into algorithmic methods

– Use of complex constructs

– Dynamic nature of autonomy (rules modified at
runtime)

3

Cognitive Model with Formal
Verification Flow

4

• Requirements are coded into a Soar cognitive agent

• Agent is transformed into formal environment for verification

– Generates runtime monitors

– Corrects the present design

• Soar agent can learn efficient ways

– Creates or modifies rules which are evaluated and/or verified

Mission
Application

Intelligent
System

Formal
Verification

Intelligent
Methods

Modified
Ruleset

Runtime
Monitors

Generate

EvaluateVerify

Create

Learn

Correct

Transform

Cognitive Architecture

• Agent architecture

– Integration of several

components

• Perception

• Memory

• Production systems

(decision procedures)

5

Ref: http://educatech.sytes.net/wiki/Soar

http://educatech.sytes.net/wiki/Soar

Soar Processing Cycle

• Proposed soar processing cycle

• Generic representation

– Any rule that is true can be executed

• Satisfies diverse range of cognitive
models

6

Proposed Soar processing cycle (refs: 3)

Uppaal a Real Time Verification Tool
• Modeling, validation and verification of real-time systems

modeled as networks of timed automata, extended with

data types (bounded integers, arrays, etc.)

– Editor

– Simulator

– Verifier

7

Translation from Cognitive Model to
Uppaal

Challenges in translation:
• Architectural Integrity
• Rule execution formalisms
• Cognitive engine flow

Specification for
Cognitive Model

Cognitive
Model

Read, Parse and Create
data structure for
Cognitive Model

Generate Rules as Uppaal
Templates

Generate a generic scheduler

Instantiate the rules

Soar Parsing for Translation

9

1. Create Antlr grammar for Soar
2. Generate the Soar parser
3. Create the data structure
4. Generate the xml for Uppaal

Scheduler: Maintaining Generic
Processing Cycle

10

• Notion of implementing a scheduler that executes a more generic
representation

• Do not need to differentiate between propose, apply and other
phases
• The satisfaction of the precondition selects the rule to be executed

Negation of
the goal

Mapping Soar to Uppaal with Counter

11

Mapping Soar to Uppaal with Counter
(contd.)

12

Mapping Soar to Uppaal with Counter
(contd.)

13

Properties checked:
For all paths eventually it reaches the goal: A<> s_num == 7
For all paths eventually is the number is larger than the specified : A<> s_num>7

Mapping Soar to Uppaal: Pilot Agent

14

Executes sequence of tasks for its mission: preflight checks, flight plan, file the plan,
launch, navigate, refuel, land and reach destination

Mapping Soar to Uppaal: Pilot Agent
(contd.)

15

Properties checked:
• All paths eventually lead to reaching destination

A<> Goal.Goal
• Does there exist a point when next waypoint is not reached but the navigator says

it has been reached
E<> t< Time_To_Next_Waypoint and Navigate_0.Run

• Does there exist a condition where next waypoint is not reached but the UAV is
trying to refuel
E<>Waypoint_Navigator_0.Run and Refuel_0.Run

• Does there exist a path where fuel is not checked
E[] Check_Fuel == false

Uppaal’s new feature generates test cases to indicate coverage based on
states and edges traversed through the properties checked

Counterexample

16

Does there exist a point when next destination is not reached but the navigator says
it has been reached

Property spec: E<> t< Time_To_Next_Waypoint and Navigate_0.Run

Correction: adding guard Check_Fuel = false

Conclusion and Future Work

• Developed automated translator from Soar to
Uppaal

• Performed formal verification of cognitive model
designed in Soar

• Method can be extended to other similar cognitive
models with appropriate modifications

• Extend the translator to handle other relevant
constructs in cognitive models

• Evaluate the translation going back from Uppaal to
Soar

• Extend the framework to integrate learning and the
associated verification

17

References

1. Formal Verification of Autonomous Vehicle Platooning,

M. Kamali, L. A. Dennis, O. McAree, M. Fisher, and S.

M. Veres, Feb 2016, ArXiv e-prints.

2. Enhancing autonomy with Trust, S. Bhattacharyya, J.

Davis, M. Matessa et. al. AUVSI 2015.

3. Extending the soar cognitive architecture, J. E. Laird,

2008 Proceeding AGI

4. Verification and validation and Artificial Intelligence, T.

Menzies and C. Pechuer, Elsevier science, 2004.

5. www.uppaal.org

18

