a2 United States Patent
Eskridge et al.

US011438385B2

US 11,438,385 B2
Sep. 6, 2022

(10) Patent No.:
(45) Date of Patent:

(54) USER INTERFACE SUPPORTING AN
INTEGRATED DECISION ENGINE FOR
EVOLVING DEFENSES

(71) Applicants:Raytheon BBN Technologies Corp.,
Cambridge, MA (US); Florida Institute
of Technology, Inc., Melbourne, FL.
Us)

(72) Inventors: Thomas C. Eskridge, Satellite Beach,
FL (US); Marco M. Carvalho, Satellite
Beach, FL. (US); Brett Benyo, Ayer,
MA (US); Michael Atighetchi,
Framingham, MA (US); Fusun Yaman,
Arlington, MA (US)

(73) Assignees: Raytheon BBN Technologies Corp.,
Cambridge, MA (US); Florida Institute
of Technology, Inc., Melbourne, FL.
Us)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

(21) Appl. No.: 17/375,580

(22) Filed: Jul. 14, 2021

(65) Prior Publication Data

US 2022/0021710 Al Jan. 20, 2022
Related U.S. Application Data
(63) Continuation of application No. 15/958,357, filed on
Apr. 20, 2018, now Pat. No. 11,082,450.
(Continued)
(51) Imt. CL
HO4L 29/06 (2006.01)
HO4L 9/40 (2022.01)
(Continued)

134

(52) US.CL

.......... HO4L 63/20 (2013.01); GO6F 16/2423
(2019.01); GO6N 3/126 (2013.01);
(Continued)

Field of Classification Search

CpPC HOAL 63/20; HOAL 63/1433; HOAL 41/22;

HOAL 63/14; HOAL 63/1441
See application file for complete search history.

(58)

(56) References Cited

U.S. PATENT DOCUMENTS

7/2016 Cui et al.
2/2020 Heydari

(Continued)

9,392,017 B2
10,554,683 Bl

OTHER PUBLICATIONS

Atighetchi, et al.; “A Decision Engine for Configuration of Proac-
tive Defenses—Challenges and Concepts”; 2016 Resilience Week
(RWS); pp. 8-12; Aug. 16-18, 2016; 5 Pages.

(Continued)

Primary Examiner — Glenford] Madamba
(74) Attorney, Agent, or Firm — Daly Crowley Mofford
& Durkee, LLP

(57) ABSTRACT

A decision engine includes: a genetic algorithm framework
including a knowledge base of standard configurations, a
candidate selector generator and a selector to select a can-
didate configuration from a plurality of preferred standard
configurations in response to the candidate selector genera-
tor; a parallelized reasoning framework including an attack
surface reasoning algorithm module to compute the security
and cost tradeoffs of an attack surface associated with each
candidate configuration; and a user interface framework
including a web service engine where users can interact and
provide feedback on direction of an evolution used in a
genetic algorithm search for evolving defenses.

17 Claims, 30 Drawing Sheets

e

interface
Framework

Genetic
Algarishrn
Framework

120 -

Paratielized

Reasoning

Framewaork

Decision Engine

US 11,438,385 B2
Page 2

Related U.S. Application Data
(60) Provisional application No. 62/488,225, filed on Apr.

21, 2017.
(51) Int. CL

HO4L 41/08 (2022.01)

GOG6N 3/12 (2006.01)

HO4L 41/22 (2022.01)

GOGF 16/242 (2019.01)

GOG6N 5/02 (2006.01)
(52) US.CL

CPC oo HO4L 41/08 (2013.01); HO4L 41/22

(2013.01); HO4L 63/1433 (2013.01); GO6N
5/022 (2013.01)

(56) References Cited
U.S. PATENT DOCUMENTS

10,862,918 B2
2015/0310188 Al
2016/0357851 Al
2017/0104780 Al
2017/0272242 Al

12/2020 Benyo et al.

10/2015 Ford et al.

12/2016 Perkins et al.
4/2017 Zaffarano et al.
9/2017 Morrell et al.

OTHER PUBLICATIONS

Atighetchi, et al.; “Automatic Quantification and Minimization of
Attack Surfaces”; 27" Annual IEEE Software Technology Confer-
ence (STC 2015); Long Beach, CA; 2015; 8 Pages.

Atighetchi, et al.; “The Concept of Attack Surface Reasoning”; The
Third International Conference on Intelligent Systems and Appli-
cations; pp. 39-42; Sevilla, Spain; 2014; 4 Pages.

Ford, et al.; “Implementing the Advise Security Modeling Formal-
ism in Mobius”; Dependable Systems and Networks (DSN); 43"
Annual [EEE/IFIP International Conference; pp. 1-8; 2013; 8 Pages.
Heumann, et al.; “Quantifying the Attack Surface of a Web Appli-
cation”; pp. 305-316; 2010; 12 Pages.

Howard; “Attack Surface: Mitigate Security Risks by Minimizing
the Code You Expose to Untrusted Users”; MSDN Magazine; Nov.
2004; 8 Pages.

Jajodia, et al.; “Moving Target Defense: Creating Asymmetric
Uncertainty for Cyber Threats”; Advances in Information Security;
vol. 54; Springer Science & Business Media; 2011; 200 Pages.
Jansen; “Directions in Security Metrics Research”; U.S. Department
of Commerce; Computer Security Division; Apr. 2009; 26 Pages.
Manadhata, et al.; “A Formal Model for a System’s Attack Surface”;
Moving Target Defense; Springer; pp. 1-28; 2011; 29 Pages.
Manadhata; “An Attack Surface Metric”; IEEE Trans. Software
Eng.; vol. 37; No. 3; pp. 371-386; 2011; 165 Pages.

Saitta, et al.; “Trike v.1 Methodology Document”; pp. 1-17; Jul. 13,
2005; 17 Pages.

Shostack; “Threat Modeling: Designing for Security”; John Wiley
& Sons; 2014; 625 Pages.

Soule, et al.; “Quantifying & Minimizing Attack Surfaces Contain-
ing Moving Target Defenses”; 3™ International Symposium on
Resilient Cyber Systems (ISRCS); Philadelphia, PA; 2015; 6 Pages.
Torgerson; “Security Metrics™; 12 International Command and
Control Research Technology Symposium; Newport, RI; Jun. 20,
2007, 15 Pages.

Verizon; “2015 Data Breach Investigation Report”; 2015; 70 Pages.
Zilberstein; “Using Anytime Algorithms in Intelligent Systems”;
American Association for Artificial Intelligence; AI Magazine; vol.
17; No. 3; pp. 73-83; 1996; 11 Pages.

Notice of Allowance dated Apr. 2, 2021 for U.S. Appl. No. 15/958,357;
16 Pages.

US 11,438,385 B2

Sheet 1 of 30

Sep. 6, 2022

U.S. Patent

l "©I4

EZCA T i

FIOMIUIB IS
- Buuosesy
- pozBjeled

P

Wignisaay

74

NEQANBULIRI
W08y
cli ICRBIRUBL SRDUBD
EloXlerc N MBRIITTY
1ZA*
HIOAABUIEE4
BOBLIBIUY
4% : JASHY
oy b

IS g

el

RIGRURS
UM

201 \

061

US 11,438,385 B2

Sheet 2 of 30

Sep. 6, 2022

U.S. Patent

¢ Old

YIOMIBN ssLidisiug

SO
feusyxy & 1
sjiawuoHAUg 130AD
pPa1sajuo0s Uj SS229Ng

uoissiy ainsug

_ _ apioaq

¢ Sasujap oyl aUnBuod | pINoYS MOH

A UOISSIAL X UOISSIA $SOSUJDP UIBLID Ao|dBp | PINOYS 2IDYM .
\ oL £ 950040 | PINOYS SISUIBP UOIYM »
suoIsSPaQ asuajeqg Joqh) BulAlg suonsand

00¢

wia|qoJd uoisioa(asuaja Jaghn ay |

US 11,438,385 B2

Sheet 3 of 30

Sep. 6, 2022

14

¢ Old

o Buieis wouny v sallusyyy

3 lf, vm»wm‘w*ww &

A IGHNA

ﬁm,...ww HPRSFUIA

L

{uogeogddy ‘SOASEH o

US 11,438,385 B2

Sheet 4 of 30

Sep. 6, 2022

U.S. Patent

¥ Old

yuetngy

s

spikiang

SN

US 11,438,385 B2

Sheet 5 of 30

Sep. 6, 2022

U.S. Patent

¢ oOld

SRS RO A
RO BEREFIY %
g womve S
JRYSEIING LIS WARAL %

US 11,438,385 B2

Sheet 6 of 30

Sep. 6, 2022

U.S. Patent

9 'Ol4

MO|+ BIB(] MO} |OJUOD
D — e
WYIoB|y Yyolessg onauss)

A%

U.S. Patent Sep. 6, 2022 Sheet 7 of 30 US 11,438,385 B2

114

FIG. 7

US 11,438,385 B2

Sheet 8 of 30

Sep. 6, 2022

U.S. Patent

8 9ld

LE}

N

oel

N

H
H
wq

i by
i RS UOHRAIT Aty o
fBowdey | M RN M M IR mmwzwi BRBUBAOI W
X i
,m,m // .@,m ¢m.w,// \\ ,@.m
/. /

i

\ SAAEN DALIEIDI

smais SiARLY

Gel
gel X
\ /
N\ /
N N /
 HHO4PUT 4
2 Wingpug
sutbus yourey N R TGP MIOMBLUBIY 908
sumiuy g3aqw | ONEGGeEY NS TETY " sesn peseg-gem
\ pussoeg IN \
LEL \ el
\ AN}

ocl

/

PEL

US 11,438,385 B2

Sheet 9 of 30

Sep. 6, 2022

U.S. Patent

6 Old

c

m 9PON -1SOH

0 uohiezioyiny
1ooed 9|buis

sQ| :bsiq
VOpPON :1sOH
10 DbuiddoH d|

IX@JU0D gpinoid

US 11,438,385 B2

Sheet 10 of 30

Sep. 6, 2022

U.S. Patent

.n“m“\“\“..“..“w..

US 11,438,385 B2

Sheet 11 of 30

Sep. 6, 2022

U.S. Patent

Ll Ol

~—_

suondo asionIp
alow pui4

.\

SUOIN|Os 1800
J9MO| UO SND0-

m

10]103|°

US 11,438,385 B2

Sheet 12 of 30

Sep. 6, 2022

U.S. Patent

¢l Old

e : i
e

ey ..“......................“..

e e
B

5u................“..

uonesayl snoiaaid wolj 1esqng BuluuIpg

e S S S S

ey

2

US 11,438,385 B2

Sheet 13 of 30

Sep. 6, 2022

U.S. Patent

€l old

¢ moj4eieq
P S ——
0] S}28UL0YD

- Agpexoeg

" Kiepunog!
1 [BIBOZUOH!

¥ e oo 20w o0t ot 100 00

IAET HIOMIDN
~Awug

24038
gieQ

<U33sI>
ciuodpug

A% priuicdpuy

1
i L Josn OVt

SOOI |

| shiadiaidhaitisshosdussiaidhaciondhaidhaadasdl |
i | Josn mmcemwcm“

H
3]

¥
- <U3ISiE>
£3ujodpuy

glutodpuy

<ualsi>
Zwodpug

<UsIsi>
TTautodpuy

gTautodpul

<UIIST>
giutodpug

giulodpuy

<UDISIT>
giujodpug

piuiodpuy

US 11,438,385 B2

Sheet 14 of 30

Sep. 6, 2022

U.S. Patent

FROBHPBIG FRUPIAIPLY

Buggmag,

wepoyens vy

RPOK BORIDRIERUNT

19

M

A

Rt

Ry

ARREly T AR A, MR WS

c09

¢l

U.S. Patent Sep. 6, 2022 Sheet 15 of 30 US 11,438,385 B2

Fig. 15

US 11,438,385 B2

Sheet 16 of 30

Sep. 6, 2022

U.S. Patent

9} "bi-

SRUBIFOL POEIMpEL

201

oupeuEay poseg-doy

OLL —

B £, PSS /tw :

wpsaey

R

#
:
:
:
:

OO +
SURUIOLD

004

1474

wosps ARG

_ClL.

U.S. Patent

720

Sep. 6, 2022

%@‘* -

.

{y S
BT
ST

R

Sheet 17 of 30

&

Erd

US 11,438,385 B2

US 11,438,385 B2

Sheet 18 of 30

Sep. 6, 2022

U.S. Patent

gl b

BRI

AN St S S

obviore g e s

Uige e
o

s N

® - .

ASHACTINORI SO

c08

US 11,438,385 B2

Sheet 19 of 30

Sep. 6, 2022

U.S. Patent

08

61 bi

¢06
SUDHRIPRI [BRPIAIDLY

906 {] e S UTING HRIBAD

US 11,438,385 B2

Sheet 20 of 30

Sep. 6, 2022

U.S. Patent

0z b4

XRG4
BUNBLLLIOLIB Y

U.S. Patent Sep. 6, 2022 Sheet 21 of 30 US 11,438,385 B2

808

Fig. 21

Rarking BarChan

US 11,438,385 B2

Sheet 22 of 30

Sep. 6, 2022

U.S. Patent

ze b

abnosg o

LORBISUSE

v a5 £ e 53

@

iy

{R0TMOTTUORIS STURN

.

w3 e B

018

U.S. Patent Sep. 6, 2022 Sheet 23 of 30 US 11,438,385 B2

812

Fig. 23

Banking

U.S. Patent Sep. 6, 2022 Sheet 24 of 30 US 11,438,385 B2

814

Fig. 24

Ranking BarChart

U.S. Patent Sep. 6, 2022 Sheet 25 of 30 US 11,438,385 B2

816

SRR
et

Fig. 25

o
T
]
&
S 4

US 11,438,385 B2

Sheet 26 of 30

Sep. 6, 2022

U.S. Patent

oz 'bi-

PRGN

BRUBROALEBNISOISY
AN BORRIIARON IS0H

U.S. Patent Sep. 6, 2022 Sheet 27 of 30 US 11,438,385 B2

O
& . N
w\ be)
:
0
P~
2z | o ~
o T
R
&
-7 ;uo:nsg,enz}ug; YRR EEE ?

US 11,438,385 B2

Sheet 28 of 30

Sep. 6, 2022

U.S. Patent

o¢ 'bi4

HEHELLE

il

B R R P R TS A A A R

HRODS SATED Sosnus Ao % i o

928
6¢ "bi4

NIGIOTOIN IEEONTL
: BEAGOALIHSY . Aterragaing
SO B AN SN BoRRIeUan AINH ISR DTS ARDUR
iomneg ey Alpow
OO

SRINROY Jad Boy

US 11,438,385 B2

Sheet 29 of 30

Sep. 6, 2022

U.S. Patent

Z¢ bi4

Y R A YL R e

T

Ry

P

MOTEING

A R

¢ "B

g

afimiese g

iogemuen

FE

11 g

Qg

US 11,438,385 B2

Sheet 30 of 30

Sep. 6, 2022

U.S. Patent

ce "bi-

Py

CHRGOERNNG

SRS

NI Reipgpreiy

UOHEOW TG

; ommonnagy e Aot
.auu.n.v.wmvw b w"uﬁw R voiB Iy Ay SR IARE) BOBeAIEY Aoy

Joseusn seeg Ainnig

ce8

US 11,438,385 B2

1
USER INTERFACE SUPPORTING AN
INTEGRATED DECISION ENGINE FOR
EVOLVING DEFENSES

CROSS REFERENCE TO RELATED
APPLICATION

This application is a Continuation Application of U.S.
application Ser. No. 15/958,357, filed Apr. 20, 2018, which
claims the benefit of U.S. Provisional Application No.
62/488,225, filed Apr. 21, 2017, which applications are
incorporated herein by reference in their entirety.

STATEMENTS REGARDING FEDERALLY
SPONSORED RESEARCH

This invention was made with Government support under
Contract No. FA8750-16-C-0205 awarded by the Depart-
ment of the Air Force. The Government has certain rights in
this invention.

FIELD OF THE INVENTION

This disclosure relates generally to techniques to control
cyber attacks and more particularly to a decision engine that
intelligently searches for optimal cyber defense configura-
tions in a way that leads to continuously improving solutions
and uses a multi-dimensional heuristic search across secu-
rity, cost, or mission attributes.

BACKGROUND

As is known in the art, cyber security remains one of the
most serious challenges to national security and the
economy that we face today. Systems employing well
known static defenses have found themselves increasingly
vulnerable to penetration from determined, diverse, and
well-resourced adversaries launching targeted attacks such
as Spear Phishing and long-term attacks such as Advanced
Persistent Threats (APTs). In recent years, a class of proac-
tive dynamic defenses known as Moving Target Defenses
(MTDs) has emerged to make entry points into networks and
systems harder to detect, to reduce vulnerabilities and make
the exposure to those vulnerabilities that remain more tran-
sient, and to render attacks against systems less effective.
MTDs attempt to reduce and dynamically modulate the
attack surfaces of systems, thereby reducing the set of
potentially successful attack vectors an adversary can use to
compromise a target system.

As the number and complexity of these defenses increase,
cyber defenders face the problem of selecting, composing,
and configuring them, a process which to date is performed
manually and without a clear understanding of integration
points and risks associated with each defense or combination
of defenses. Better systems are needed to aid cyber defend-
ers performing cyber security.

SUMMARY

In accordance with the present disclosure, a decision
engine is provided comprising: a genetic algorithm frame-
work including a knowledge base of standard network
configurations, a candidate selector generator and a selector
to select a candidate configuration from a plurality of
preferred standard configurations in response to the candi-
date selector generator; a parallelized reasoning framework
including an attack surface reasoning algorithm module to

15

20

30

40

45

50

55

60

65

2

compute the security and cost tradeoffs of an attack surface
associated with each candidate configuration; and a user
interface framework including a web service engine where
users can interact and provide feedback on direction of
evolution used in a genetic algorithm search.

In accordance with the present disclosure, a method to
implement evolving defenses in a network includes: provid-
ing a genetic algorithm framework including a knowledge
base of standard network configurations, a candidate selec-
tor generator and a selector to select a candidate configura-
tion from a plurality of preferred standard configurations in
response to the candidate selector generator; providing a
parallelized reasoning framework including an attack sur-
face reasoning algorithm module to compute the security
and cost tradeoffs of an attack surface associated with each
candidate configuration; and providing a user interface
framework including a web service engine where users can
interact and provide feedback on direction of an evolution
used in a genetic algorithm search.

In accordance with the present disclosure, a method of
communicating with a user interface by an operator
includes: providing feedback on the convergence direction
of evolution used in a genetic algorithm search, allowing
human input to better guide the search; influencing the
search tradeoff between exploration, where the candidate
generator can produce largely varying configurations to
explore different areas of the search space, and exploitation,
where smaller changes are made to a promising high-scoring
candidate, to more thoroughly explore a small region of the
configuration space; and requesting specific changes to
include the use of a specific defense or a restriction on
modifying a network resource, to be included in the next
generation.

In one embodiment, the method also includes: accessing
quantitative results about the currently explored defense
configurations to identify the configuration with the highest
security given a certain upper limit for cost; accessing the
best configurations found so far and determine whether the
search is explorative where better results may take many
generations to be found or exploitative where better results
can be found in a few more iterations.

In accordance with the present disclosure, a user interface
for a user operator to interact and provide feedback on
direction of an evolution of cyber defenses includes: a user
interface framework including a web service engine where
users can interact and provide feedback on direction of an
evolution of defenses.

The details of one or more embodiments of the disclosure
are set forth in the accompanying drawings and the descrip-
tion below. Other features, objects, and advantages of the
disclosure will be apparent from the description and draw-
ings, and from the claims.

DESCRIPTION OF DRAWINGS

FIG. 1 is a diagram of a decision engine according to the
disclosure;

FIG. 2 is a diagram of the cyber defense decision problem
cyber defenders are addressing with the system of FIG. 1;

FIG. 3 is a graph showing changes in attack starting point;

FIG. 4 is an ontology representation of a generic dynamic
defense;

FIG. 5 is an example of an attack surface model used for
analysis;

FIG. 6 is a diagram of the Genetic Algorithm Framework;

FIG. 7 is a diagram of the Parallelized Reasoning Frame-
work;

US 11,438,385 B2

3

FIG. 8 is a diagram of the User Interface Framework;

FIG. 9 is a block diagram of generating initial configu-
rations;

FIG. 10 is a block diagram of quantifying configurations;

FIG. 11 is a diagram of a winning subset of configura-
tions;

FIG. 12 is a diagram of generating new configurations;

FIG. 13 is a block diagram of an example network
environment being analyzed by the decision engine;

FIG. 14 shows a conceptual interface for EW/Cognitive
radio;

FIG. 15 shows communication events over time (in the
vertical axis);

FIG. 16 shows a user interface to allow users to interact
with the evidence and the reasoning framework;

FIG. 17 shows an exploratory display with an interface
showing dashboard, tracking at multiple layers, and user
querying of live datasets;

FIG. 18 shows a display to assess adaptive system per-
formance;

FIG. 19 shows a display to visualize environment mod-
eling:

FIG.

FIG.

FIG.

FIG.

FIG.

FIG.

FIG.

FIG.

FIG.

FIG.

FIG.

FIG.

20 shows a display to understand performance;

21 shows a basic interface display;

22 shows an advance interface display;

23 shows a display to perform basic comparison;

24 shows a deploying and monitoring display;

25 shows a control method window;

26 shows an installation window;

27 shows a view of a scatterplot;

28 shows a view of a provenance;

29 shows a view of operator preferences;

30 shows a view of configuration summaries;

31 shows a view of population history line chart;
FIG. 32 shows a view of configuration constraints; and
FIG. 33 shows a view of function modification.

Like reference symbols in the various drawings indicate
like elements.

DETAILED DESCRIPTION

Before departing on a detailed explanation of the system
according to the disclosure, it may be helpful to review the
challenges and concepts of proactive defensive cyber tech-
niques. In a computing network environment, selecting
appropriate cyber defense mechanisms for an enterprise
network and correctly configuring them is a challenging
problem. Identifying the set of defenses and their configu-
rations in a way that maximizes security without exhausting
system resources or causing unintended interference (a
situation known as cyber friendly-fire) is a multi-criteria
decision problem that is difficult for humans to solve effec-
tively and efficiently. Proactive defenses are especially dif-
ficult to configure due to their temporal nature. This disclo-
sure describes the challenges and solution concepts for a
decision engine that: (1) intelligently searches for optimal
cyber defense configurations in a way that leads to continu-
ously improving solutions; (2) uses compute clusters to scale
computation to realistic enterprise-level networks; and (3)
presents meaningful choices to operators and incorporates
their feedback to guide the search and improve the suggested
solutions.

In current cyber warfare, the odds are inherently stacked
against the defender. According to one report, attackers were
able to compromise an organization within minutes in 60%
of cases and many of these attacks can go undetected for
months. Cyber attackers frequently automate much of their

10

15

20

25

30

35

40

45

50

55

60

65

4

work through management platforms, such as Metasploit,
that enable rapid sharing and reuse of code. Furthermore,
malware has evolved to the point where botnets and viruses
make autonomous decisions, e.g., to remain dormant if they
detect monitoring in an environment or to intertwine attacks
with regular user activities to stay within the variance of
observable parameters. This level of sophistication and the
time pressure introduced by automated execution makes
targeted attacks difficult to detect and mitigate.

One way system owners and cyber defenders have
responded to counter this threat is to use proactive defenses
to make targets less predictable, giving rise to what is known
as Moving Target Defenses (MTDs). State-of-the-art MTDs
continuously change attack surfaces of applications, hosts,
and networks to increase adversarial work load and uncer-
tainty. While there is great value in proactive defenses in
general and in MTDs specifically, it is also quite easy to add
defenses that provide little added value, introduce unaccept-
able cost or overhead, inadvertently increase the attack
surface, or exhibit unintended negative side effects when
combined with other defenses. A Command and Control of
Proactive Defense (C2PD) solution is needed to prevent
such cyber friendly fire. We envision a decision engine as an
integral component of C2PD to help cyber defenders choose
from among available proactive defenses, configure
deployed defenses, and achieve the best protection for the
target system with the least impact on the system’s mission
effectiveness.

As described in the article “Quantifying & Minimizing
Attack Surfaces Containing Moving Target Defenses,” by N.
Soule, B. Simidchieva, F. Yaman, R. Watro, J. Loyall, M.
Atighetchi, M. Carvalho, D. Last, D. Myers, and C. B.
Flatley, and presented at the 3rd International Symposium on
Resilient Cyber Systems (ISRCS), Philadelphia, Pa., 2015
and incorporated herein by reference, when analyzing a
system and assessing its attack surface, one must consider
(1) the potential adversary capabilities and starting points,
e.g., distinguishing external threats from insider threats, (2)
the intra- (among processes) and inter-host connectivity that
allow legitimate or malicious actors to move from element
to element within the system, (3) which elements are
required for operational use, and among those which are
required for a given mission, (4) the application and mission
level requirements that if unmet lead to degraded operation
or failure, and (5) the defenses available for deployment, the
potential deployment locations, and the protection they
provide. The ASR algorithms and metrics operate over a set
of models that together describe the system under exami-
nation, its defenses, the assumed capabilities and starting
point(s) of the adversary, and optionally a mission, which
may operate over the defined system.

Referring now to FIG. 1, a decision engine 110, to be
described in more detail hereinafter, will enable defenders to
select and configure the most appropriate cyber defenses for
a given target environment supporting multiple concurrent
mission operations more effectively and efficiently. By auto-
mating activities at multiple levels, the decision engine 110
transforms a cyber defense management process that is
currently dominated by manual operations into a streamlined
computer-assisted workflow, which delegates heavyweight
computation to a compute cluster 10 and leverages human
insight to guide the search for optimal configurations. Using
the decision engine 110, cyber defenders 102 will be able to
explore a large space of possible configuration settings in a
short amount of time, enabling an agile defense posture that
continuously incorporates and adapts defenses based on new
proactive defenses that become available, new information

US 11,438,385 B2

5

about adversarial capabilities, new mission or changing
requirements, and/or changes in protected systems. The
benefits of the decision engine 110 will apply to a variety of
cyber defenders in different environments, including system
administrators and other personnel who are responsible for
the continued operation of computer systems and networks
that might come under attack.

Referring now also to FIG. 2, to illustrate the decision
problems that cyber defenders 202 face, consider a simpli-
fied example of a network environment typically found in
enterprise environments, such as the networks present at a
company campus shown on the right of FIG. 2. An enterprise
network 200 includes multiple network enclaves each con-
taining hundreds of computing resources, including servers,
laptops, and network equipment. Resources in the enclave
can be shared among multiple concurrent missions with
different requirements on security guarantees (e.g.,
expressed in terms of availability, confidentiality, and integ-
rity of services and data) and cost (e.g., measured by
throughput and latency of information exchanges).

Cyber defenders 202, shown on the left of FIG. 2, are
responsible for ensuring mission success by ensuring that
the computer and network resources provide the required
functionality, even in contested cyber environments involv-
ing sustained adversarial activities. To protect the target
network and systems, the cyber defenders 202 have access
to a number of defenses, including different MTD imple-
mentations, each with a different set of parameters and
associated security benefit/cost tradeoffs to be described
further hereinafter. The main decision problem faced by
cyber defenders 202 is composed of the following three
parts: Defense Selection, Defense Deployment, and Defense
Parameterization. Defense Selection is answering the ques-
tion “Which defenses should I choose?”” The cyber defender
202 needs to choose the most appropriate combination of
defenses for the given set of resources, missions, and
expected attack types. One key concern for deployment is
the desire to create defense-in-depth postures using a stra-
tegic combination of defenses that complement each other
and require adversaries to overcome multiple hurdles. How-
ever, a common problem is concentration on a single type
and instance of defense, which can have wide-ranging
consequences if adversaries find a bypass or compromise
vulnerability for the specific defense. Defense Deployment
is answering the question “Where should I deploy certain
defenses?” The cyber defender 202 needs to identify the
places in the network or platforms to place the selected
defense instances. Liberally sprinkling defenses throughout
the enterprise network 200 without regard for their resource
requirements and interactions can easily become a manage-
ment nightmare and introduce unacceptable costs, which
could cause missions to fail. One driving concern is to
ensure defense coverage over the attack surface. For
instance, a frequent mistake is to concentrate defenses on the
network layer and fail to provide defense coverage on
endpoints. Defense Parameterization is answering the ques-
tion “What parameters should I choose for the defenses?”
Once the defense and the deployment targets are identified,
the cyber defender 202 needs to ensure that the defenses are
configured properly for the systems on which they have been
installed. Modern cyber defenses can offer a large set of
tunable parameters to adjust. A driving concern is to find
parameter settings that maximize security and mission per-
formance while controlling for associated costs. A secondary
concern is the desire to create configuration diversity across
defense instances to increase adversarial workload.

10

15

20

25

30

35

40

45

50

55

60

65

6

Given these decision points, cyber defenders 202 in
charge of deploying and monitoring defenses face a multi-
criteria decision problem well beyond the scale at which a
single person can be expected to find optimal solutions by
hand. This is particularly true because the criteria involved
are not independent of each other, requiring search across a
large space of interacting possible candidate configurations.
Manual approaches generally turn into frustrating tasks of
continually tweaking candidate configurations, may devolve
to random walk searches, and are not the best use of human
time and expertise. In addition, it is also hard for humans to
notice when a radically different candidate configuration
change is warranted, e.g., due to a few changes in mission
requirements. Human-only approaches suffer from a knowl-
edge transfer problem as new cyber defenders require sig-
nificant training and knowledge transfer associated with staff
rotation. The decision engine 110 automates the tedious
manual activities associated with exploration of defense
performance while at the same time leveraging human
intuition and experience to help guide the search for optimal
defense selection, deployment, and parameterization. The
combination of these data along with the semantic repre-
sentation of network, system, attack, and defense models
form a candidate configuration to be evaluated by the
decision engine 110. The decision engine 110 provides a
feasible solution as fast as possible, using further time and
resources to refine the candidate configuration or explore a
wider set of options by finding alternate candidate configu-
rations that either favor different cost/security tradeofls or
lead to structurally different deployments. To achieve scal-
ability and minimize decision latencies, the implementation
of the decision engine 110 strategically combines anytime
search with big-data processing.

FIG. 1 shows the overall architecture of the decision
engine 110 as a collection of three frameworks: a genetic
algorithm (GA) framework 112, a parallelized reasoning
framework 114 and a user interface framework 120. The
genetic algorithm (GA) framework 112, shown in the middle
of' the figure, implements an anytime search, to be described
further hereinafter, across defense configurations 126 to
generate candidate configurations, evaluate candidates using
ASR algorithms and select best candidates for the next
round. A Candidate Generator 122 constructs new defense
configurations 126 to consider using multiple methods,
including (1) a knowledge base of previous operator-se-
lected standard configurations, (2) genetic crossover and
random mutations of high-scoring candidates from the pre-
vious iterations of the search algorithm, and (3) mixed-
initiative guidance provided by human operators. The GA
framework 112 uses the parallel reasoning framework 114
discussed below to compute fitness scores over security and
cost tradeoffs by running ASR algorithms on particular
configurations and collecting metric scores. Upon receiving
results, a Selector 124 choose a subset of the higher-scoring
configurations as input for the next round of candidate
generation. The parallelized reasoning framework 114 con-
trolled by a job dispatcher 120 computes the security and
cost tradeoffs of the attack surface associated with each one
of the candidate defense configurations 126 using ASR
algorithms 116 referred to as Attack Surface Reasoning
(ASR) techniques. A result receiver 118 provides the results
of each candidate defense configuration analysis to the
genetic algorithm framework 112 for consideration. Mul-
tiple candidate configurations can be computed indepen-
dently of each other, allowing for effective parallelization
using cloud-computing substrates. The user interface frame-
work 130 includes a web service engine 132 with a HTML

US 11,438,385 B2

7

user interface 136 to interact with cyber defenders (also
referred to as operators or users) 102 to allow users to
provide insights and guidance and to allow users to under-
stand and influence a search. The cyber defenders 102 are
receiving mission models 160 for consideration and inter-
acting with the decision engine 110 can institute control
defense wrappers 140 on the network. Other software 150
may also be utilized using an API 134 to interact with such
software.

As described in the article “Using Anytime Algorithms in
Intelligent Systems” by S. Zilberstein and published in A7
Mag.,vol. 17, n0. 3, p. 73, 1996 which is incorporated herein
by reference, desired properties of anytime algorithms
include the following features: First is measurable quality:
The quality of an approximate result can be determined
precisely. For example, when the quality reflects the distance
between the approximate result and the correct result, it is
measurable as long as the correct result can be determined.
Second is recognizable quality: The quality of an approxi-
mate result can easily be determined at run time (that is,
within a constant time). For example, when solving a
combinatorial optimization problem (such as path planning),
the quality of a result depends on how close it is to the
optimal answer. In such a case, quality can be measurable
but not recognizable. Third is monotonicity: The quality of
the result is a nondecreasing function of time and input
quality. Note that when quality is recognizable, the anytime
algorithm can guarantee monotonicity by simply returning
the best result generated so far rather than the last generated
result. Fourth is consistency: The quality of the result is
correlated with computation time and input quality. In
general, algorithms do not guarantee a deterministic output
quality for a given amount of time, but it is important to have
a narrow variance so that quality prediction can be per-
formed. Fifth is diminishing returns: The improvement in
solution quality is larger at the early stages of the compu-
tation, and it diminishes over time. Sixth is interruptibility:
The algorithm can be stopped at any time and provide some
answer. Originally, this was the primary characteristic of
anytime algorithms, but can show later that noninterruptible
anytime algorithms, termed contract algorithms, are also
useful. Seventh is preemptability: The algorithm can be
suspended and resumed with minimal overhead. We have
determined that implemental an anytime algorithm in the
decision engine 110 efficiently selects the desired counter-
measure for the current environment.

Suffice it to say here, the anytime algorithm implemented
in the decision engine 110 in the genetic algorithm frame-
work 112 as described above generate candidate configura-
tions through knowledge base or mutations, scores each
configuration through ASR via parallel reasoning, weighs
the scores using the selectors to determine the best subset,
report any interesting solutions to the User Interface, and
finally cycle back to the first step and generate more con-
figurations. This cycle repeats until a defined stopping
condition is met, either number of iterations or score thresh-
olds have been met. The selectors are weighted sum func-
tions of the individual metrics computed by ASR and
additional metrics described below (Solution Uniqueness
Value) and (Defense Conflict Index). These weighted sum
functions return a single numerical value that represents the
score from that selector for a given configuration. By
ranking these scores and selecting the top N (where N is a
configurable parameter), the algorithm produces a set of best
configurations. These best configurations are then used as
input to the mutation operators that generate the next round
of configurations. These mutation operators select one or

35

40

45

50

8

two elements of the best configuration set and modify them
by either changing a parameter or location of a defense, or
combining defenses from two configurations, to create a
new configuration.

The score for a specific configuration is a weighted sum
of the individual metrics and the algorithm stores the raw
metric values, these scores are measurable and recognizable,
satisfying the first two features of an anytime algorithm
defined above. The best configurations found so far are
always available to the operator, satisfying the monotonicity
property. Consistency and diminishing returns are verified
experimentally and the degree to which these properties are
satisfied is dependent on the specific scenario. This algo-
rithm is interruptible, since it can be terminated at any
iteration, and pre-emptible, since it can be started from any
existing generation by loading that generation in from
storage, executing the quantifier to score the current gen-
eration if quantification was not completed before the algo-
rithm was terminated and continuing the main processing
loop from there.

As described in the article “The Concept of Attack
Surface Reasoning” by M. Atighetchi, N. Soule, R. Watro,
and J. Loyall, and published in The Third International
Conference on Intelligent Systems and Applications, Sevilla,
Spain, 2014, which is incorporated herein by reference, an
Al-inspired approach for modeling and analyzing the attack
surface of a distributed system with the models, metrics, and
algorithms used in measuring attack surfaces need to support
the following key requirements. The attack surface model
needs to represent concepts and defenses situated at multiple
layers. Attacks may target resources at the network layer
(both network traffic observed on intermediary network
components between the client and the server as well as the
Transmission Control Protocol (TCP)/Internet Protocol (IP)
stacks of servers and clients), the operating system and host
layers (e.g., by running attacks against a Java Virtual
Machine (JVM) compute platform), and the application
layer (e.g., by corrupting Structured Query Language (SQL)
tables). We refer to this requirement as vertical layering, as
visualized by the attack vector in FIG. 3 as it moves from
Vulnerability 2 to Vulnerability 3. The attack surface model
needs to capture ordering dependencies between control and
data flows and defenses to be employed against attack
vectors. Attacks consist of an orchestrated execution of
individual attack steps, where the effectiveness of each
attack step is contingent on the starting point (and level of
privilege) in relation to the specific target. For instance,
network attacks launched from a legitimate client have a
significantly different starting point compared to the same
attacks launched from an adversary-controlled device
attached to the network. This knowledge should be part of
the attack surface model. An example of ordering at a given
vertical layer includes a firewall placed in front of a pro-
tected host, requiring all traffic to pass through the firewall
first before reaching the host’s TCP/IP stack. We refer to this
requirement as horizontal layering, as visualized by moving
from Vulnerability 1 to Vulnerability 2 in FIG. 3. The attack
surface models need to capture complexities associated with
dynamic defenses. Many of the attack effects are difficult to
detect automatically and cause observable events only when
critical mission functionality starts failing, leaving little time
for recovery and increasing the impact of the attack. While
proactive shaping strategies, such as IP Hopping, Operating
System (OS) masquerading, unpredictable replication, and
Address Space Layout Randomization (ASLR) are clearly
beneficial, the existence of multiple dynamic adaptations at
different system layers makes management of the overall

US 11,438,385 B2

9

policy and configuration sets deployed on the target devices
challenging. A multilayer attack surface randomization and
minimization, consisting of a single Server may include
three MTDs: (1) IP Hopping that randomizes IP addresses
between the client and server at the network layer, (2) OS
masquerading that changes parameters in the OS stack to
make one OS look like another, and (3) Process variants that
generate different functionally equivalent versions of bina-
ries and replicas. The overall goal of ASR is to quantify the
attack surface along two main attributes—minimization and
randomization—with the objective of minimizing access
where possible and randomizing information about remain-
ing access where affordable.

The algorithms to compute minimization rely on the
system and mission models and metrics to determine how
much of the attack surface really needs to be exposed to
effectively function for a mission or, conversely, the parts of
the attack surface that can be reduced or removed without
adversely affecting critical mission functionality. For
example, some applications with external facing interfaces
(thereby providing entry into the system if penetrated) might
not be needed during some phases of mission operation—or
might not be as critical—and can be shut down, removing
those entry points into the system and their associated
vulnerabilities and attack vectors. The algorithms to com-
pute randomization execute over the models and metrics for
a system deployment and a set of defenses, including MTDs,
and compute how the defenses or combination of defenses
change the attack surface.

Modeling an attack surface involves linking several dif-
ferent models, each representing aspects of the defended
system. An attack model, describing goals of an attack,
together with starting points, can be used to evaluate the
attack surface for randomization attributes. The mission
model, describing the set of required interactions in support
of mission critical functionality, can be used to minimize
access by pruning unnecessary access paths and highlighting
those elements most important to mission success. FIG. 4
displays a high-level ontological view of a defense model
and shows how a defense is described by a setup over a set
of resources. For IP hopping, the setup contains the set of
machines that have access to the hopping scheme’s secret
key and can therefore compute what the next IP address is
going to be. Attacks that start from the hosts that are part of
the setup are not impeded in any way by the defense, since
they all have access to the secret key of the hopping scheme
and therefore perceive no randomization. FIG. 4 also shows
that a defense provides protection for a set of resources, as
expressed by the Defense—provides—Protection link. We
model the type of protection provided in terms of overall
security benefit, including confidentiality, integrity, avail-
ability, and discoverability. Furthermore, we express the
mechanism of protection that the defense imposes. The
Protection—through—Filtering link captures any security
check that explicitly drops data, e.g., as it is being flagged by
anomaly detection at various layers. The
Protection—through—=Randomization link captures aspects
of dynamism associated with proactive shaping strategies.
As shown in FIG. 4, the protections directly link to the scope
of'the defense, in terms of entry points, exit points, and data,
which are key aspects of our definition of the attack surface.
Finally, each defense has a cost associated with it (as shown
to the right of FIG. 4). We include the fact that defenses can
increase the attack surface via Defense—adds—Data and
Defense—adds—Point links.

The randomization, minimization, and other characteriza-
tion metrics and analyses provided by ASR share an under-

25

35

40

45

65

10

lying common base of feasible-path analysis, but can be
classified into distinct groups based on the operations that
occur post-path-determination. Metric Computation allows
for calculation of metrics describing the randomization,
minimization, or other characteristics of a point, path, or
system, including the metrics in Table 1.

TABLE 1

Randomization

Number of defenses with dynamic modulation

frequencies greater than any applicable attack phase duration
Defense modulation frequency

Number of dynamic surfaces

Number of dynamic surfaces per protection type
(confidentiality, integrity, availability,discoverability)
Minimization

Number of deployed defenses

Attack surface area change due to defenses
Number of defense boundaries crossed per path
Number of paths with less than N defenses
Rule granularity of defenses

Number of processes

Number of open ports

Number of users

Other Characterizations

Sum of path lengths from entry point to each defense
Is there at least 1 defense per known attack class
Number of paths with conflicting defense types
Number of entry points without a defense within 1 hop

Path Comparison calculations execute path differencing and
comparison algorithms to determine the set of elements in a
system that are not required to support a given mission, and
the disabling of which will help reduce the attack surface
with-out degrading operation.

Path Enumeration analyses are undertaken to discover
points, paths, and system configurations that exhibit certain
properties, such as all paths that contain defenses with
dynamic frequencies less than 5 minutes.

FIG. 5 depicts an example system model and defense
model which, when integrated, form an attack surface
model, along with an accompanying simplified attack
model. The system model, shown in blue in the center,
describes a single host with two network interface cards
(NICs), through which a single service may be accessed. The
service is also exposed internally on the host via an Appli-
cation Programming Interface (API). A single defense has
been modeled in the nodes at the top, in this case an IP
hopping MTD named DYNAT and described in article
entitled “Dynamic approaches to thwart adversary intelli-
gence gathering” by D. Kewley, R. Fink, J. Lowry, and M.
Dean, and published in “DARPA Information Survivability
Conference & Exposition (DISCEX), 2001, vol. 1, pp.
176-185. The MTD has been configured to protect the IP
address of NIC 1 on Host 1. An attack class, shown at the
bottom, has been modeled (in an abbreviated form) describ-
ing an attack category that is relevant to network endpoints.
Given a model such as this, ASR’s processing engine allows
for the performance of many interesting analyses and metric
computations. For example, in order to determine how many
paths are protected by defenses that change more slowly
than some known attack class’s expected duration (and are
thus not dynamic enough to provide robust protection), one
may compute the metric number of defenses with dynamic
modulation frequencies greater than any applicable attack
phase duration. Calculation of this metric is accomplished
by first performing a path analysis identifying all possible

US 11,438,385 B2

11

paths through the system—for this example binding the
starting points to network entry points (thus ignoring insider
threats) based on the given attack model domain and binding
the goal states to all “services.” Given these starting points
and goals, six possible attack paths exist. FIG. 5 shows three
of these paths (paths 1, 2, 3), with the other three being
symmetric mirrors, starting from Network EP 2. The ASR
path analysis engine will identify the paths starting from the
two network entry points (Network EP 1, and Network EP
2) and branching from there to go directly to Service 1 (via
path 1 and its symmetric equivalent), indirectly to Service 1
through the API (via path 2 and its symmetric equivalent),
or indirectly through the opposing NIC (via path 3 and its
symmetric equivalent). At this point the identified paths are
stored such that they may be re-used for multiple queries in
the second phase of analysis.

The second and third phases for the metric in question
involves executing SPARQL Protocol and RDF Query Lan-
guage (SPARQL) queries (to identify all defenses meeting
the pre-scribed criteria) and aggregation operations (here, a
simple sum) over the set of paths. Three of the feasible paths
(paths 1, 2, and 3) encounter an MTD whose randomization
frequency is on the order of seconds. Since the attack in the
simplified attack class model has an expected duration on
the order of minutes, the MTD is determined to provide
adequate protection (for the paths it covers) and thus this
metric will have a value of 0, i.e., there are no defenses with
dynamic modulation frequencies greater than the attack
phase duration. However, determining the overall protection
of this system should evaluate this metric in the context of
other important metrics. For example, calculating the metric
number of paths with fewer than N defenses would highlight
that entry through NIC 2 is unprotected. Further, had the
metric been defined to include a larger set of starting points
the resulting value would have been even larger, as insider
attacks that start from a privileged base on Host 1 will not
pass through any defense.

In addition to the base path exploration, many other
analyses may be performed. For example, the user may wish
to elaborate on the numeric value calculated as part of the
number of paths with fewer than N defenses metric by
drawing from the enumeration category of analyses to ask
ASR to identify all paths that include less than one defense.
Again, a SPARQL query is defined to operate over the initial
set of feasible paths and selects only those that include no
defenses.

In one exemplar scenario based on DoD capability readi-
ness exercises in which ground forces are directing an
aircraft providing Close Air Support (CAS) via video and
image annotation, an Unmanned Aerial Vehicle (UAV) is
collecting video and still imagery, which it submits to a
publish/subscribe-based Information Management System
(IMS). The IMS disseminates both video and images to two
clients: A Joint Terminal Attack Controller (JTAC) over a
mobile tactical network and a Tactical Operation Center
(TOC) client over a Local Area Network (LAN). The IMS
is connected to a database for persistence of data received.
Finally, an administrator can change settings in the IMS
through an administrative client. This network can be pro-
tected by three types of defenses, IP Hopping, OS Hopping,
and Single Packet Authentication, each of which protect
certain endpoints, hosts, or dataflows, and each instance has
configurable parameters such as frequency of hopping or
number of backing servers. In addition, the decision engine
takes as input a mission model which provides additional
throughput and latency constraints on specific dataflows, in
order to ensure that the network can still provide necessary

10

15

20

25

30

35

40

45

50

55

60

65

12

service guarantees. Referring now also to FIG. 6, all of these
inputs are provided to the Anytime Search algorithm, which
starts by executing the Generate Initial Configurations step,
which uses two generators to create an initial population of
configurations. First, it loads a set of pre-defined configu-
rations from a knowledge base that is populated by experi-
enced users with configurations that have been employed in
the past that the user believes are good starting points.
Second, the population is filled out by using the Random
Generator which creates candidate defense configurations
by randomly picking a defense type (e.g. OS Hopping), a
location (e.g. the IMS host), and values for each configur-
able parameter. After a sufficient set of candidates are
generated, (30 in this exemplar scenario), they are sent to the
Parallel Reasoning framework for quantification. The Par-
allel Reasoning quantifier determines how many compute
nodes are available, assigns each node a portion of the
population, and uploads the assigned configurations to
HDEFS (the distributed file system used by the Parallel
Reasoning framework). The Parallel Quantifier then com-
putes the metrics for Solution Uniqueness Value (SUV) and
Defense Conflict Index (DCI) locally, and waits for the
compute nodes to finish and publish the resulting ASI/ACI/
and AMI metrics back to RDFS. Once the scores are
available, they are entered into each selector’s fitness func-
tion, and the resulting fitness scores are ranked. The default
selectors include a High Security selector, which weights the
Aggregate Security Index (ASI) highest (80%), giving a
little weight to the Aggregate Cost Index (ACI) (10%) and
Aggregate Mission Index (AMI) (10%), and a Low Cost
selector, which gives the more weight to ACI (60%), with
AST at 20% and AMI at 20%. Finally, a High Uniqueness
selector gives weight to SUV (40%), with the remaining
60% distributed to the other metrics. Each of these selectors
is then given a percentage of the winning set to compute.
The initial conditions are to give the High Security selector
half (50%), the Low Cost selector half (50%), leaving no
weight for the High Uniqueness selector. The High Unique-
ness selector is effectively held in reserve until the user
desires for more different solutions, in which case the weight
for the High Uniqueness selector can be increased. These
selectors implement a weighted sum fitness function that
combines the individual metric scores into a single value.
Each configuration is then ranked according to this value,
and a smaller subset of the highest ranking configurations is
then chosen to serve as the base configurations for the next
generation. The next generation is created from these base
configuration by employing one of three mutation methods,
chosen randomly. The mutation method creates a new con-
figuration by making a single change to one configurable
parameter for one defense configuration. The crossover
method takes a subset of the defenses in one base configu-
ration and combines them with a subset from another base
configuration. Finally, the Add or Remove defense method
either adds a new randomly generated defense configuration
to the set from a base configuration, or removes one. These
newly generated configurations form the next population
and the cycle repeats.

In this example, a high security and high cost solution
involving placing a fast configured IP hopping defense on
the database server is usually found early and reported to the
user interface. The search progresses considering many
other candidates before reporting on another slightly lower
security, with lower cost, solution involving a set of IP
hopping defenses configured to hop more slowly. The user
can then choose to implement one of those solutions, or
guide the search to consider different solutions.

US 11,438,385 B2

13

The Parallel Reasoning system is based on the Apache
YARN framework. The framework can run on a single node,
or a cluster of any number of compute nodes. One of the
compute nodes is designated the “master” and the others are
all “workers”. Once the Anytime Search algorithm has
generated a set of N configurations that are ready for
scoring, the entire set is presented to the master. The master,
using the Apache YARN framework, divides up the set of
configurations to score among the worker nodes, and passes
the necessary inputs to the worker nodes through the
Hadoop Distributed File System (HDFS). Each worker node
executes the ASR algorithm on a candidate configuration
and sends back the computed scores to the master, which
collects all scores and reports them back to the Anytime
Search algorithm.

Referring now to FIG. 7, a block diagram of the paral-
lelized reasoning framework 114 is shown where the Any-
time Search algorithm can be running on a computer exter-
nal to the compute cluster used for the YARN framework.
Even if Anytime Search is running locally on the cluster, we
use the same protocols to communicate to the parallelized
reasoning framework. First, the Anytime Search algorithm
opens a Secure Shell (SSH) connection to one node in the
compute cluster designated as the “master”. Commands are
sent to this node to verify that the YARN cluster is up and
operational, and to start it if not. The Anytime Search
algorithm uploads the base models that ASR needs to
compute, that do not depend on a specific defense configu-
ration, to the HDFS file system through the WebHDFS
protocol. The HDFS system then ensures that these base
models are available on each compute node. Then, when the
Anytime Search algorithm has a population of defense
configurations to quantify, it writes out the configurations to
a text file and uploads the set of files to WebHDFS. Finally,
the Anytime Search algorithm sends a command via SSH to
trigger the computation. This causes an application to
execute on the “master” node that assigns each configuration
to one of the available compute nodes, spawns a compute
job on each compute node, and waits for completion of that
job. The compute jobs upload the resulting metric scores
computed by ASR to HDFS. Finally, this master application
terminates when all compute nodes are done, signaling the
Anytime Search algorithm that it can begin downloading the
results from HDFS through WebHDEFS. The User Interface
(UI) framework 130, shown at the top of FIG. 1, enables
operators to provide feedback on the direction of evolution
used in the GA search, allowing human input to better guide
the search. Human operators 102 can influence the search
tradeoff between exploration, where the candidate generator
122 can produce largely varying configurations to explore
different areas of the search space, and exploitation, where
smaller changes are made to a promising high-scoring
candidate, to more thoroughly explore a small region of the
configuration space. For ultimate control, operators 102 can
request specific changes, e.g., the use of a specific defense
or a restriction on modifying a network resource, to be
included in the next generation. In addition, operators 102
can access quantitative results about the currently explored
defense configurations, e.g., to identify the configuration
with the highest security given a certain upper limit for cost.
At any time, the operator 102 can access the best configu-
rations found so far and determine whether the search is
explorative (better results may take many generations to be
found, if at all) or exploitative (better results can be found
in a few more iterations).

Referring now to FIG. 8, a diagram of User Interface (UI)
framework 130 is shown where the InDEED Anytime

10

15

20

25

30

35

40

45

50

55

60

65

14

Search Engine 131 provides data to the UI Backend 132 that
formats the data for visual display to the operator in the
Web-based User Interface Framework 133. The UI Backend
132 responds to the data queries from the Web-based User
Interface Framework 133 through a set of RESTful End-
points 138 that access the stored data from the InDEED
Anytime Search Engine 131. The Web-Based User Interface
Framework 133 contains both Analytic Views 134 of the GA
search data which may display provenance or fitness over
time data 136 and Interactive Views 135 that enable the
operator to impart information to direct the direction of the
search either through the introduction of new individuals to
include in the GA population or through topology filters 137
that either require or prohibit the deployment of defenses in
particular locations.

The decision engine 110 needs to take into account
constraints from IT infrastructures, adversary capabilities,
and mission operations to identify the best security possible
at an acceptable cost. Solving utility functions for more than
one constraint is very difficult for humans to manage. Our
approach for solving the defender’s multi-criteria decision
problem involves anytime search over the set of possible
candidate configurations (i.e., what, where, and how to
deploy defenses) in a practical way that hides much of the
complexity from the user defender and presents results in
easy to understand and quantitative way. As described
above, the anytime search is described in more detail in the
article by S. Zilberstein, entitled “Using anytime algorithms
in intelligent systems” published in 4/ Mag., vol. 17, no. 3,
p.- 73, 1996. Leveraging capabilities developed under ASR,
the decision engine 110 builds on previous work on quan-
tifying the attack surface of a candidate configuration
through a fitness function F over three aggregate level
indexes namely the Aggregate Security Index (ASI), Aggre-
gate Cost Index (ACI), and Aggregate Mission Index (AMI)
as described in the articles “Automatic Quantification and
Minimization of Attack Surfaces,” by M. Atighetchi, B.
Simidchieva, N. Soule, F. Yaman, J. Loyall, D. Last, D.
Myers, and C. B. Flatley, and presented at the 27th Annual
IEEE Software Technology Conference (STC 2015), Long
Beach, C A, 2015; “Quantifying & Minimizing Attack
Surfaces Containing Moving Target Defenses” by N. Soule,
B. Simidchieva, F. Yaman, R. Watro, J. Loyall, M.
Atighetchi, M. Carvalho, D. Last, D. Myers, and C. B.
Flatley, and presented at the 3rd International Symposium on
Resilient Cyber Systems (ISRCS), Philadelphia, Pa., 2015;
and “The Concept of Attack Surface Reasoning” by M.
Atighetchi, N. Soule, R. Watro, and J. Loyall, and presented
in The Third International Conference on Intelligent Sys-
tems and Applications, Sevilla, Spain, 2014.

An example of utilizing Aggregate Security Index (ASI),
Aggregate Cost Index (ACI), and Aggregate Mission Index
(AMI) within the decision engine 110 follows. The initial
configuration generated by the Random generator step of the
Anytime Search algorithm for the DoD exemplar scenario
described above, include a configuration that places an 1P
Hopping defense called ARCSYNE protecting the link
between the Admin server and the IMS server as well as a
Single Packet Authorization (SPA) defense protecting
another endpoint on the IMS server. The ASI score for this
configuration was 60.0, with an ACI of 18.4 and AMI of
25.0. These scores were above the threshold values defined
by the operator, so this configuration was reported to the user
as the first viable solution found. As the Anytime Search
algorithm continued, 80 other configuration were scored
until a configuration was found that used a combination of
a VPN defense and ARCSYNE, this scored the same on ASI

US 11,438,385 B2

15

and AMI but lower ACI (14.9), and thus was reported to the
user as an interesting solution. Finally, after 160 configura-
tion were evaluated, another solution involving two extra
SPA defenses in addition was discovered that had a higher
ACI (41.0), but a much higher ASI (104). This configuration
provided much more security at a higher cost, and was also
reported to the user. Finally, the algorithm found another
solution in between with ASI of 85 and ACI of 23, which
provided the best combination of security and cost, involv-
ing a single SPA defense, a VPN, and an instance of
ARCSYNE.

In addition, the decision engine 110 provides additional
metrics for inclusion into the fitness function, namely a
Defense Conflict Index (DCI) and Solution Uniqueness
Value (SUV). The Defense Conflict Index (DCI) is an
aggregate of two sub-metrics. First, a knowledge base of
known defense interactions is loaded, which consists of
experiment reports from live experiments where multiple
defenses were tested operating on the same host. If these
tests indicate a potential conflict where the defenses oper-
ated differently together than separately, a high DCI score is
returned, indicating a likely conflict would result if this set
of defenses was instantiated. Since the number of potential
interaction effects scales quadratically with the number of
defense types, the second submetric considers the potential
for unknown conflicts between untested defense sets. This
submetric computes the likelihood of an unknown conflict
by executing queries over the models of the defenses look-
ing for shared resources, hosts, or components requiring
configuration. These submetrics are combined to produce
the DCI value. The SUV metric (Solution Uniqueness)
computes the similarity of a set of defenses to the current set
of defense configurations with the best scores that have been
reported to the user. The similarity is computed by exam-
ining every configurable parameter (including the location
of the defense), and returning a score with higher values
when parameters area closer. Sets of defenses are compared
by finding the most similar pair, removing them from
consideration, and then finding the next most similar pair,
and iterating until all defenses have been considered. Note
that metric values are turned into ratios for metrics where
lower means better. These metrics not only cover criteria
related to security, cost, and mission-impact, but also capture
the risk of functional incompatibilities between multiple
defenses (DCI) and enable operators to provide guidance in
the search for optimal configurations (through the SUV).
Furthermore, the decision engine 110 enables operators to
define multiple selectors, each with a specific set of weights
used for the calculation of a fitness function. The overall
search process can use a combination of selectors, e.g., to
focus on finding the most secure configurations initially
(through a selector with a proportional high weighting factor
for the ASI) while switching over the search to minimizing
cost later on (through a selector with a proportional high
weighting factor for the ACI).

The decision engine 110 provides the operator 102 a
targeted what-if capability. As new defenses become avail-
able and situations change in environments where defenses
are already deployed, it is desirable to do quick reevalua-
tions. Furthermore, drastic changes to already deployed
components are untenable in operational environments dur-
ing live mission execution. For these reasons, the decision
engine 110 needs to support targeted exploration through a
what-if capability. The decision engine 110 provides a
directed model-based user interface (UI) using the user
interface framework 120 that enables operators 102 to inject
their knowledge and constraints into the search and deci-

25

40

45

50

55

16

sion-making process, ¢.g., by removing a specific defense
instance or all instances of a specific type, making specific
changes to defense parameters, or changing the importance
of features in the evaluation function. This enables cyber
defenders to start with a candidate configuration and study
the impact of specific changes prior to deployment.

The decision engine 110 provides the operator 102 the
ability to identify unintended interaction effects across
defenses. Deploying multiple cyber defenses into a network
can easily lead to cyber friendly fire. The decision engine
110 needs to deconflict multiple defenses by reasoning about
unintended side effects and competing requirements on
security and cost. This is done by computing the DCI metric
as described above. The decision engine 110 utilizes Attack
Surface Reasoning (ASR) techniques to identify interaction
effects introduced by software dependencies and informa-
tion that is required to be static by some defenses but
dynamically varied by others, and introduce the new
Defense Conflict Index to quantify these effects. For
example, experimental results indicate that a specific imple-
mentation of an OS Hopping defense interacted with a
Single Packet Authentication defense when both were run-
ning on the same host, resulting in a failure of the SPA
defense to provide any security. The DCI submetric for
known interactions will produce a large value for any
configuration with this condition. For a different IP Hopping
implementation, we have no experimental results running on
the same host as an SPA defense. Any configuration set
including IP Hopping and SPA running on the same host (but
on different network cards) will have a low DCI value, but
non zero, indicating the potential for an unknown conflict. If
the two defenses run on the same network on the same host,
the DCI score will be higher.

The decision engine 110 needs to operate at realistic scale,
tempo, and fidelity. To assist cyber defenders 202 or opera-
tors 102 in operational environments, the decision engine
110 needs to analyze candidate configurations within hours
across local-level networks (hundreds of hosts) covering
relevant and available cyber defenses (both proactive/reac-
tive and across hosts/networks) in support of multiple con-
current missions. The models used by the decision engine
110 also need to accurately reflect real-world attacks and
defense aspects in order to avoid making decisions using
information that is stale, incomplete, or inappropriate. The
decision engine 110 addresses these challenges via three
design considerations. First, the decision engine leverages
cloud technologies to scale to large problems by using an
appropriate level of compute resources. Second, the anytime
properties of GA search enable the decision engine 110 to
quickly arrive at a good-enough answer that operators 102
can work with immediately, while the system continues to
look for a globally optimal candidate configuration. Third,
the decision engine 110 leverages human intuition and
experience through a Ul that guides search convergence to
higher quality solutions faster.

Referring now to FIG. 9, the decision engine 110 initially
generates initial configurations from the network topology,
the defense models being used in view of the operational
context of the environment. Historical configurations and
other knowledge and constraints are taken into consideration
as the initial configurations are generated. This is done
through a knowledge base where the user can provide a set
of defense configurations to try first, based on user intuition
or what has worked in the past. The search process will use
these as a starting point and can converge upon solutions

US 11,438,385 B2

17

faster, if the assumptions and user intuition were still valid
in the current context. If not, the search will progress to other
solutions.

Referring now to FIG. 10, the initial configurations are
fed to the parallelized reasoning framework 114 where ASR
is used to score the configurations and to quantify the
configuration.

Referring now to FIG. 11, a winning subset of configu-
rations are selected by a user and deployed as the initial set
of configurations for defense of the network.

Referring now to FIG. 12, the decision engine 110 con-
tinues to generate new configurations in view of changing
environment and threats and as directed by a user. The
decision engine 110 uses available information from defense
models and how parameters influence metrics and takes
portions of the two winning configurations and merge them
to form new configurations and will add or remove defense
instances from the configuration. A user 102 can always
request the current best solution and the decision engine 110
will inform the user when an interesting solution has been
found. A viable solution is one where the metrics meet
pre-defined acceptable thresholds which will also be pro-
vided to a user.

Referring now to FIG. 13, a block diagram of a typical
network environment 500 being analyzed by the decision
engine 110 is shown. The network 500 includes a UAV client
502 connected to a mobile network 504 and a IMS server
506. Also connected to IMS server 506 using VLAN 508 is
admin client 510. IMS server 506 is also connected to
VLAN 512 which is connected to DB Server 514 and to
Enterprise client 516. Also shown is JTAC client 518 which
is connected to IMS server 506 using mobile network 504.
An attack client 520 is also shown which can introduce
unwanted results into the network environment 500. The
attacker operating at the Attack Client 520 has goals they
want to achieve on the network, namely causing a Denial of
Service (DoS) on the IME server 506 or an Elevation of
Privilege effect on the Database Server 514. The attack steps
that the attacker can use to achieve these effects involve
sniffing traffic going across these links, probing for infor-
mation, fingerprinting the operating systems, sending a TCP
flood to disrupt a service, or taking over servers when a
defect is found. The black dataflow links (such as the arrow
between Endpoint4 in 510 and Endpoint 3 in 506) represent
the data flows that have throughput and latency requirements
in order for the mission to be considered successful.

Referring now to FIG. 14, a main task for a user interface
600 is to present a toolkit for an operator or user to identify
the relative merits of alternative communication profiles in
terms of temporal, spatial, and communications effective-
ness. The interface 600 is an interconnected suite of com-
ponents that are designed to enhance operator situation
awareness, action selection and action effect comprehen-
sion. The interface 600 provides the operator with an exter-
nal representation of the network environment that enhances
understanding and decision-making with less cognitive
effort than conventional displays. Effective external repre-
sentations of complex environments are created by repre-
senting the semantics of the underlying data rather than
measurements of the data itself. This removes the operator’s
mental burden of maintaining a complex model of an
environment and replaces it with a direct perception task.
The construction and interactions amongst the interface
components also encode key environment, performance, and
uncertainty information that can be readily interpreted by the
operator. The interactions between components are effec-
tively used to show correlated behavior between environ-

10

15

20

25

30

35

40

45

50

55

60

65

18

mental or performance-related signals, but also reliably
indicated when predicted correlated behaviors fail to mate-
rialize.

The interface 600 as shown in FIG. 14 includes three main
sets of interactively connected components: (a) Map-based
signal tracking, localization, and environmental effects
(window 602); (b) Explanatory Visualizations of the oper-
ating environment (window 614, window 612); and (c)
Visualizations and Tools for understanding, comparing, and
manipulating the behavior of learning and reasoning algo-
rithms used in the system (window 604, window 606,
window 608 and window 610). The Map-based signal
tracking visualization component shows geo-located track
movements and activity over time. The purpose of the
display is to show a large, filterable set of emitters and the
interactions between them and different mitigations (i.e.,
jammers) taken to counter them. The display also provides
a convenient starting point for understanding the global
situation, and for identifying and drilling down into more
select. The outer rings of the map view show signal activity
over time, where the inboard edge is most recent and the
outboard edge the most distant past. This introduces a
temporal aspect of the movement and periodicity of com-
munication events. The map view can be views top-down (as
in FIG. 14) or tilted to show a vertical dimension that can
encode signal intensity, power, or other features of emitters.
FIG. 15 shows a tilted, three-dimensional view 620 encod-
ing spatio-temporal signal relationships. Time is the vertical
dimension, color identifies the signal, and the connections
show the communications link.

The Explanatory Visualization components (window 614,
window 612) are a set of views of the geo-located data that
are constructed to better answer the specific, commonly-
asked questions of the operator. Examples of Explanatory
Visualization components are graph-like depictions of net-
work topology or communication networks and the com-
monly used waterfall view for wireless network operations.
These are tools that operators are familiar with and provide
a means of drilling down into data with other components.

Visualizations and tools for understanding and manipu-
lating learning and reasoning algorithms are specialized
displays (window 604, window 606, window 608 and win-
dow 610) that convey the state of the learning components
of the system and can be very useful in conveying the
capabilities of the system in the given environment. The
historical performance of a group of classifiers, combined
with a visual breakout of the signal aspects used by the
classifier to make a decision can provide the operator with
information critical to his/her understanding of the operation
of' the classifier and the probable outcome of different signal
mitigations. In FIG. 14, window (section) 604 shows the
performance of individual classifiers on a current problem.
This component shows the operator show common or spe-
cialized the problem is based on the number of individual
solutions that perform well on it. If only one or a few
classifiers perform well, the problem is more difficult and
may require additional resources or should be directed to
exploit the currently high-performing solutions by expand-
ing on their behavior more in subsequent generations. If
virtually all of the classifiers perform well, then the problem
is either over-resourced, or is very simple to solve which
indicates that the operator should direct the GA to explore
alternative solutions by including more randomness. Win-
dow (section) 606 aggregates the performance of the indi-
vidual classifiers into groups according to various criteria
such as threat type or resource usage. Comparing different
groups of classifiers on the given problem shows a broad

US 11,438,385 B2

19

brush effectiveness of alternative strategies capable of solv-
ing the problem. Window (section) 608 provides informa-
tion into the historical performance of group strategies on
problems in the past. This links the user into a wider
experience base and permits subtle distinctions between
strategies to be made.

Window (section) 610 shows a tool for comparing differ-
ent solutions to the current problem, that is called the
jellyfish, because of the hemispherical shape of the top of the
figure, and the tendril-like lines extending from the bottom
of' the figure. In the figure, the horizontal axis is divided into
columns of features of the solutions being compared. The
columns are sorted so that the most important features are in
the middle, and the less important features are at the edges.
The figure results in a Gaussian Normal curve-like arc when
the importance of each feature is plotted for the solutions to
be compared. Below the horizontal line is plotted the per-
formance of the feature in the selected algorithm. The longer
the bars the better the performance. The solutions under
comparison are given different colors in the jellyfish, making
it easy to see gaps and asymmetries in solution capabilities.

Interaction with the reasoning algorithms is enabled by
our innovative ontology-supported query views and mecha-
nisms. The resulting display concept is to portray objects
and overlays on a map-view of the area of interest. Display
elements will be shown as “semantic primitives” that are
directly isomorphic to pertinent aspects of prediction and
control, rather than relying on a human’s mental calculations
to fill the gaps. Each object is also directly linked both into
the ontologies and into the relevant computational work-
flows. Thus, highlighting an object on the display will bring
up a corresponding node in the ontology-supported search
window. Relationships with other displayed objects auto-
matically appear, making it easy for the operator to select
relationships to explore or to de-clutter the display. These
relationships will also be one of the key integration points
with the computational algorithms.

Referring now to FIG. 16, a display 700 is shown with a
user interface exemplar which uses a linked set of visual-
ization components to include section (sometimes also
referred to as a window) 702, section 704, section 706,
section 708, section 710, section 712 and section 714. To
illustrate how a user might interact with the evidence and
reasoning algorithm’s products, using the labeled sections in
the display 700, the following example is provided. For
example, the user operating in the real time mode will be
able to visualize a family of TTPs inferred by the algorithms
as shown in section 712 on the display 700. These TTPs then
can be geospatially linked and overlaid on a map of the area
of interest as in section 702. Analysts can also check the
logic underlying the TTPs by viewing the right-hand column
of the display which includes the results of a parallel swarm
algorithm search going from a detailed survey of the number
of possible outcomes investigated (section 704), to an aggre-
gation of the hypothesized coverage of the available data
based on the subset of outcomes that reached some set of a
priori criteria (section 706).

As analysts operate in the discovery mode, they can
interact with the visualization component shown in section
708. Here, the user sees an overall aggregation of several
key factors that help to understand the probability distribu-
tions produced by, for example, the (hypothetical) causal
discovery algorithm. These algorithm-centric tools allow
users to recognize when multi-INT-sensed behavior is
approaching a tipping point—such as an imminent
ambush—or when it is simply generating clutter represent-
ing the populace’s typical (but dynamic) behavior. Addi-

10

15

20

25

30

35

40

45

50

55

60

65

20

tional tools allow users to scan the parameter space of a
system of models efficiently and to zero in on regions
requiring more attention. The component shown to the user
in section 710 is a unique “Performance+Context” presen-
tation of the aggregate effects of the candidate activities in
relation to the selected TTP model that is developed to assist
analysts in understanding and manipulating the underlying
reasoning algorithm. Analyst-users investigate many differ-
ent scenarios within the same general context by manipu-
lating the values and weights depicted in these components,
depicted as red and green bars, showing their influence on
the solutions generated by the model, which initiate a
forward propagation forecast using the new data.

Users may change the structure of the underlying TTP
models or the general representations of the area of interest
by changing the underlying semantics used by the system.
Such model modification is accomplished with either the
threat model under investigation as shown in section 710 or
with the visual ontology editor shown in section 714.

Referring now to FIG. 17, a notional exemplar display
720 is depicted of other displays in the real-time, exploratory
analysis mode, including: (i) a “dashboard” with an Indica-
tor and Warning (I&W) display; and (ii) a probability
“meter” that also shows multiple streams of data in a
common frame of reference. In addition to the use of
displays for primary information regarding the I&W task,
we ensure that the user is able to ascertain uncertainty with
respect to the presentation of objects and relationships or
perhaps the wider dimension of overall reliability of the
evidence.

The left side of the display 720 shows a geo-spatial map
of the area of interest annotated with detected entities and
locations of events. Alternatively, this could be a network
topology map with the activities of users and defenses
annotated on the network graph. Activity traces and con-
nected TTPs can also be overlaid on the map if selected by
the user from the list to the right of the map area. The top
right shows three graphs in a “dashboard” that indicate the
overall situation status in terms of the numbers of unclas-
sified signals, the top four TTPs based on the evidence, and
the rates of intelligence streaming into the system from
different sources. With exploratory analysis, the user’s task
is to derive patterns from the data that indicate either known
TTPs, or that are evidence of new/evolving TTPs. To do this,
the operator can look at the number and locations of existing
and newly acquired entities and from that information can
begin to infer new events, activities, and TTPs. The node and
link graph on the right is an interactive, ontology-supported
querying tool that is used to investigate relationships
between entities, events, and activities.

As discussed above, the disclosure teaches a technique to
influence the behavior of an adaptive system in two ways:
(a) leading the adaptive system to good solutions by insert-
ing individuals into the population of consideration and
modifying evaluation function to favor exploration or refine-
ment of existing solutions; and (b) removing search space
from consideration by restricting the proposed solutions to
avoid having infeasible, impractical or disallowed solutions
from consideration and ensuring the solutions contain
aspects that are required by the operator, the operational
context, or the organization.

Referring now to FIG. 18, an operator can observe display
802 and grasp an understanding of the state of the adaptive
system, capture an overall assessment and explore different
solutions and how they compare.

Referring now to FIG. 19, an operator can observe display
804 and obtain visual feedback on performance of signal

US 11,438,385 B2

21

classification. Feedback is provided on individual model
classifications as provided in section 902, classifications
according to threat type as provided in section 904 and
overall classifier performance over time as provided in
section 906. The latter is used to assist operator in deter-
mining what makes successful classifiers. Visualizations
help operators understand if the adaptation algorithm is
stuck in a local minima or does not have the criterion to
distinguish better solutions.

Referring now to FIG. 20, an operator can observe display
806 where this visualization shows how different classifi-
cation algorithms perform with respect to an evaluation
function. The lower portion (line chart) of display 806 shows
performance of classifiers over time. The upper portions of
display 806 shows importance of each feature to the given
classifier where principal components analysis is performed
over the population and individual solutions to determine the
importance of each feature in the solution. Multiple classi-
fiers can be shown in different colors for comparison.

Referring now to FIG. 21, display 808 shows basic
interface which shows (a) a bar chart showing performance
of genetic individuals, (b) network map showing network
topology and defense and machine characteristics, and (c)
slider to vary GA search from exploratory to exploitive.

Referring now to FIG. 22, display 810 shows an advanced
interface which shows more tabs along the bottom pane that
enables the operator to look at: (a) console showing logging
messages from the GA processor and from the interface, (b)
summary of the top defense configurations, (c) scatterplot
showing relationship on multiple axes (usually cost vs
security) of proposed configurations, (d) bar plot showing
characteristics (usually cost or security) of proposed con-
figurations, (e) layout showing network topology and all
data flows, (f) provenance showing the genealogy of the
proposed configurations, (g) insertion allows operator to
insert a new defense configuration into the GA population to
direct the search towards that and similar individuals, (h)
filter allows the operator to modify the rules under which
new defense configurations are constructed by requiring or
preventing particular defense configurations, and (i) prefer-
ences where user preferences can be modified.

Referring now to FIG. 23, display 812 shows basic
comparison which allows two individuals to be selected and
their similarities and differences shown on the network map.
Green shows common elements, red shows elements in
configuration 1 and not in configuration 2, and blue shows
elements in configuration 2 but not in configuration 1. The
information on the left shows specific information about
hosts on the network, including what processes are running
and the options for installing and running new capabilities or
defenses.

Referring now to FIG. 24, display 814 shows the ability
to install, monitor, and control elements on the network
topology. In this example, the SAWD agent (a software
process that can install and control network sensors and
defenses based on the local command and control) can be
installed, and there are two defenses running in this con-
figuration, AppOSDiversityDefense and BroSensor. These
can be stopped and restarted or can have specific methods
executed on them by clicking on the blue circle with the
white box.

Referring now to FIG. 25, display 816 shows a control
method window to show the control dialog that appears
when the blue circle in the FIG. 24 is clicked. The infor-
mation contained in this dialog comes from the defense
ontology.

10

15

20

25

30

35

40

45

50

55

60

65

22

Referring now to FIG. 26, display 818 shows an instal-
lation window to show an installation dialog where new
sensors and defenses can be installed, and the installation
parameters read from the ontology are displayed to the
operator.

Referring now to FIG. 27, display 820 shows a view ofa
scatterplot as referenced with the description of the
advanced interface of FIG. 22.

Referring now to FIG. 28, display 822 shows a view of a
provenance as referenced with the description of the
advanced interface of FIG. 22.

Referring now to FIG. 29, display 824 shows a view of
operator preferences as referenced with the description of
the advanced interface of FIG. 22.

Referring now to FIG. 30, display 826 shows a view of
configuration summaries as referenced with the description
of the advanced interface of FIG. 22.

Referring now to FIG. 31, display 828 shows a view ofa
population minimum, maximum and average fitness over
time history line chart.

Referring now to FIG. 32, display 830 shows a view of
configuration constraints by selecting a filter tab as refer-
enced with the description of the advanced interface of FIG.
22.

Referring now to FIG. 33, display 832 shows a view of
function modification by selection a preference tab as ref-
erenced with the description of the advanced interface of
FIG. 22.

It should now be appreciated, the disclosure provides
concepts for a decision engine that intelligently searches for
optimal cyber defense configurations in a way that leads to
continuously improving solutions and to use a multi-dimen-
sional heuristic search across security, cost, or mission
attributes to quantify the attack surface of a system.

It should also be appreciated, the disclosure teaches an
integrated decision engine which provides: (a) Anytime
Search to include: Generate Candidate Configurations,
Evaluate Candidates using ASR Algorithms and Select best
candidates for the next round; (b) Parallelized Reasoning
Framework to include: Run ASR algorithms on one con-
figuration and Collect resulting metric scores; and (c¢) User
Interface to include Allow user to provide insights and
guidance and Allow user to understand and influence the
search. The disclosure also provides concepts for an user
interface that presents meaningful choices between multiple
cyber defense configuration to operators and incorporates
their feedback to improve the suggested solutions and lever-
ages human insight to guide the search across potential
cyber defense configurations and to explore spaces where
defenses are needed the most or most applicable. Search
space must have structure, gradients to climb in order for a
genetic algorithm to be effective. ASR metrics combined
with new metrics provides structure. Solution Uniqueness,
Defense Conflict Index. User Preference, Smart mutation,
guide the search using domain knowledge instead of relying
on randomness. Modifying parameters often has well
defined effect on metrics, increasing cost or lowering secu-
rity, determined through experimentation (CHoPD). User
Guidance is provided at every step of the algorithm. Users
can understand how the search is progressing and influence
it through an intuitive Ul

It should also be appreciated the disclosure teaches a
method of communicating with a user interface by an
operator to include: providing feedback on the direction of
evolution used in a genetic algorithm search, allowing
human input to better guide the search; influencing the
search tradeoff between exploration, where the candidate

US 11,438,385 B2

23

generator can produce largely varying configurations to
explore different areas of the search space, and exploitation,
where smaller changes are made to a promising high-scoring
candidate, to more thoroughly explore a small region of the
configuration space; and requesting specific changes to
include the use of a specific defense or a restriction on
modifying a network resource, to be included in the next
generation.

A number of embodiments of the disclosure have been
described. Nevertheless, it will be understood that various
modifications may be made without departing from the spirit
and scope of the disclosure.

All publications and references cited herein are expressly
incorporated herein by reference in their entirety.

Accordingly, other embodiments are within the scope of
the following claims.

What is claimed is:

1. An apparatus comprising:

auser interface framework including a web service engine
that allows users to interact and provide feedback on
direction of an evolution of cyber-security defenses and
to provide interactive views of genetic algorithm search
data to an operator that enable the users to introduce
new individuals to a genetic algorithm population,
impart information to guide a search by a genetic
algorithm and introduce topology filters that can
require or prohibit deployment of defenses in particular
locations;

a search engine to provide feedback on the convergence
direction of evolution used in a genetic algorithm
search, to allow human input with the user interface
framework to better guide the search and to influence a
search tradeoff between exploration and exploitation to
more efficiently explore a region of a configuration
space; and

areasoning framework to allow human input with the user
interface framework to request specific changes to
include use of a specific defense or a restriction on
modifying a network resource to be included in a next
generation of the genetic algorithm search, to access
quantitative results about the currently explored
defense configurations to identify the configuration
with the highest security given a certain upper limit for
cost, and to access the best configurations found so far
and determine whether the search is explorative or
exploitative.

2. The apparatus as recited in claim 1 wherein the user
interface framework provides analytic views of the genetic
algorithm search data.

3. The apparatus as recited in claim 2 wherein the analytic
views display provenance or fitness over time data.

4. The apparatus as recited in claim 1 wherein the quan-
titative results about the currently explored defense configu-
rations provides information that enable the user to intro-
duce topology filters that can required or prohibit
deployment of defenses in particular locations.

5. The apparatus as recited in claim 1 wherein the best
configurations found so far enable the user to guide the
genetic algorithm search.

6. The apparatus as recited in claim 1 wherein the quan-
titative results about the currently explored defense configu-
rations provides information that enable the user to intro-

30

35

40

45

55

24

duce topology filters that can require or prohibit deployment
of defenses with particular parameter values.

7. The apparatus as recited in claim 1 wherein the users
provide insights and guidance to an evolution of defense
configurations.

8. The apparatus as recited in claim 7 wherein the users
provide feedback on the convergence direction of evolution
used in a genetic algorithm search allowing human input to
guide the search.

9. A user interface framework comprising:

a web service engine, stored on a computer, with a user
interface to interact with a cyber defender user to allow
the cyber defender user to provide insights and guid-
ance of cyber-security defenses, to interact and provide
feedback on direction of an evolution of cyber-security
defenses and to provide interactive views of genetic
algorithm search data that enable the cyber defender
user to introduce new individuals to a genetic algorithm
population, impart information to guide a search by a
genetic algorithm and introduce topology filters that
can require or prohibit deployment of defenses in
particular locations, and to allow the cyber defender
user to understand and influence a search on a search
engine.

10. The user interface framework as recited in claim 9
wherein the cyber defender user is receiving mission models
for consideration and interacting with a decision engine to
institute control defense wrappers on a network.

11. The user interface framework as recited in claim 9
wherein the web service engine provides data to an Ul
Backend that formats the genetic algorithm search data for
visual display to the cyber defender user.

12. The user interface framework as recited in claim 11
wherein the Ul Backend responds to the data queries
through a set of endpoints that access stored data from the
search engine.

13. The user interface framework as recited in claim 9
wherein the interactive views includes analytic views of the
genetic algorithm search data which may display prov-
enance or fitness over time data.

14. The user interface framework as recited in claim 9
wherein the interactive views include:

(a) a window to show map-based signal tracking, local-

ization, and environmental effects;

(b) a window to show explanatory visualizations of the
operating environment; and

(c) a window to show visualizations and tools for under-
standing, comparing, and manipulating the behavior of
learning and reasoning algorithms used in a system.

15. The user interface framework as recited in claim 14
wherein the map-based window shows geo-located track
movements and activity over time.

16. The user interface framework as recited in claim 9
wherein the interactive views portray objects and overlays
on a map-view of the area of interest.

17. The user interface framework as recited in claim 9
wherein the interactive views shows a tool for comparing
different solutions to the current problem.

#* #* #* #* #*

	Front Page
	Drawings
	Specification
	Claims

